7 research outputs found

    Is There a “Window of Opportunity” for Flexibility Development in Youth? A Systematic Review with Meta-analysis

    No full text
    Background: Flexibility is an important component of physical fitness for competitive and recreational athletes. It is generally suggested that flexibility training should start from childhood (6–11 years of age) to optimize joint range of motion (ROM) increases; however, evidence is limited and inconsistent. Objective: To examine whether there is a difference in the effect of stretching training on flexibility during childhood (6–11 years of age) and adolescence (12–18 years of age). Design: Systematic review and meta-analysis. Methods: We searched PubMed Central, Web of Science, Scopus, Embase, and SPORTDiscus, to conduct this systematic review. Randomized controlled trials and non-randomized controlled trials were eligible. No language and date of publication restrictions were applied. Risk of bias was assessed using Cochrane RoB2 and ROBINS-I tools. Meta-analyses were conducted via an inverse variance random-effects model. GRADE analysis was used to assess the methodological quality of the studies. Results: From the 2713 records retrieved 28 studies were included in the meta-analysis (n = 1936 participants). Risk of bias was low in 56.9% of all criteria. Confidence in cumulative evidence was moderate. We found that stretching was effective in increasing ROM in both children (SMD = 1.09; 95% CI = 0.77–1.41; Z = 6.65; p < 0.001; I2 = 79%) and adolescents (SMD = 0.90; 95% CI = 0.70–1.10; Z = 8.88; p < 0.001; I2 = 81%), with no differences between children and adolescents in ROM improvements (p = 0.32; I2 = 0%). However, when stretching volume load was considered, children exhibited greater increases in ROM with higher than lower stretching volumes (SMD = 1.21; 95% CI = 0.82–1.60; Z = 6.09; p < 0.001; I2 = 82% and SMD = 0.62; 95% CI = 0.29–0.95; Z = 3.65; p < 0.001; I2 = 0%, respectively; subgroup difference: p = 0.02; I2 = 80.5%), while adolescents responded equally to higher and lower stretching volume loads (SMD = 0.90; 95% CI = 0.47–1.33; Z = 4.08; p < 0.001; I2 = 83%, and SMD = 0.90; 95% CI = 0.69–1.12; Z = 8.18; p < 0.001; I2 = 79%, respectively; subgroup difference: p = 0.98; I2 = 0%). Conclusions: Systematic stretching training increases ROM during both childhood and adolescence. However, larger ROM gains may be induced in childhood than in adolescence when higher stretching volume loads are applied, while adolescents respond equally to high and low stretching volume loads. Registration: INPLASY, registration number: INPLASY202190032; https://inplasy.com/inplasy-2021-9-0032/. © 2022, The Author(s)

    Acute effects of intermittent and continuous static stretching on hip flexion angle in athletes with varying flexibility training background

    No full text
    Τhis study examined changes in hip joint flexion angle after an intermittent or a continuous static stretching protocol of equal total duration. Twenty-seven female subjects aged 19.9 ± 3.0 years (14 artistic and rhythmic gymnasts and 13 team sports athletes), performed 3 min of intermittent (6 × 30 s with 30 s rest) or continuous static stretching (3 min) of the hip extensors, with an intensity of 80-90 on a 100-point visual analogue scale. The order of stretching was randomized and counterbalanced, and each subject performed both conditions. Hip flexion angle was measured with the straight leg raise test for both legs after warm-up and immediately after stretching. Both stretching types equally increased hip flexion angle by ~6% (continuous: 140.9° ± 20.4° to 148.6° ± 18.8°, p = 0.047; intermittent: 141.8° ± 20.3° to 150.0° ± 18.8°, p = 0.029) in artistic and rhythmic gymnasts. In contrast, in team sports athletes, only intermittent stretching increased hip flexion angle by 13% (from 91.0° ± 7.2° to 102.4° ± 14.5°, p = 0.001), while continuous stretching did not affect hip angle (from 92.4° ± 6.9° vs. 93.1° ± 9.2°, p = 0.99). The different effect of intermittent vs. continuous stretching on hip flexion between gymnasts and team sports athletes suggests that responses to static stretching are dependent on stretching mode and participants training experience. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Force–time characteristics of dynamic and isometric muscle actions: Association with muscle architecture in female athletes

    No full text
    The association between force–time characteristics of isometric leg press (ILP) and counter-movement jump (CMJ) with vastus lateralis (VL) muscle architecture, was examined in 19 female athletes (aged 23.2 ± 5.4 years). Peak force (PF), average rate of force development (ARFD) and rate of force development (RFD) at different time epochs were calculated from the force–time curve, as well as CMJ jump height and power. Significant correlations were found between ILP-PF and CMJ power (r = 0.658, p < 0.01), while both variables were correlated with VL thickness and fascicle length (r = 0.471 to 0.648, p < 0.05). Significant correlations were also observed between ILP-RFD epochs and VL fascicle length (r = 0.565 to 0.646, p < 0.05) and between CMJ height with VL thickness (r = 0.523, p < 0.05). Furthermore, positive correlations were found between ILP and CMJ in ARFD (r = 0.625, p < 0.01) and RFD epochs (r = 0.464 to 0.566, p < 0.05). ILP-PF and muscle thickness accounted for 52.8% (p = 0.002) of the variance in CMJ power. These results suggest that isometric force time characteristics are associated with power generation during dynamic muscle actions. Furthermore, VL muscle thickness and fascicle length are associated with rapid force production in female athletes, irrespective of the type of muscle action. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    ADVISABILITY OF PERFORMING SIMULTANEOUS GYNECOLOGIC SURGICAL PROCEDURES FOR COLON CANCER

    No full text
    The last decade is characterized by increased concern with problems of primary multiple neoplasm phenomena. Authors discuss vari- ous diagnostic methods used in the management of patients with multiple malignancies, in particular, in patients with colon cancer. Applicability of performing simultaneous gynecologic surgical procedures for colon cancer is evaluated

    Implementing Ultrasound Imaging for the Assessment of Muscle and Tendon Properties in Elite Sports: Practical Aspects, Methodological Considerations and Future Directions.

    No full text
    Ultrasound (US) imaging has been widely used in both research and clinical settings to evaluate the morphological and mechanical properties of muscle and tendon. In elite sports scenarios, a regular assessment of such properties has great potential, namely for testing the response to training, detecting athletes at higher risks of injury, screening athletes for structural abnormalities related to current or future musculoskeletal complaints, and monitoring their return to sport after a musculoskeletal injury. However, several practical and methodological aspects of US techniques should be considered when applying this technology in the elite sports context. Therefore, this narrative review aims to (1) present the principal US measures and field of applications in the context of elite sports; (2) to discuss, from a methodological perspective, the strengths and shortcomings of US imaging for the assessment of muscle and tendon properties; and (3) to provide future directions for research and application
    corecore