133 research outputs found

    Self trapping transition for a nonlinear impurity within a linear chain

    Full text link
    In the present work we revisit the issue of the self-trapping dynamical transition at a nonlinear impurity embedded in an otherwise linear lattice. For our Schr\"odinger chain example, we present rigorous arguments that establish necessary conditions and corresponding parametric bounds for the transition between linear decay and nonlinear persistence of a defect mode. The proofs combine a contraction mapping approach applied in the fully dynamical problem in the case of a 3D-lattice, together with variational arguments for the derivation of parametric bounds for the creation of stationary states associated with the expected fate of the self-trapping dynamical transition. The results are relevant for both power law nonlinearities and saturable ones. The analytical results are corroborated by numerical computations.Comment: 16 pages, 7 figures. To be published in Journal of Mathematical Physic

    A constrained random-force model for weakly bending semiflexible polymers

    Full text link
    The random-force (Larkin) model of a directed elastic string subject to quenched random forces in the transverse directions has been a paradigm in the statistical physics of disordered systems. In this brief note, we investigate a modified version of the above model where the total transverse force along the polymer contour and the related total torque, in each realization of disorder, vanish. We discuss the merits of adding these constraints and show that they leave the qualitative behavior in the strong stretching regime unchanged, but they reduce the effects of the random force by significant numerical prefactors. We also show that a transverse random force effectively makes the filament softer to compression by inducing undulations. We calculate the related linear compression coefficient in both the usual and the constrained random force model.Comment: 4 pages, 1 figure, accepted for publication in PR

    Stretching semiflexible filaments with quenched disorder

    Full text link
    We study the effect of quenched randomness in the arc-length dependent spontaneous curvature of a wormlike chain under tension. In the weakly bending approximation in two dimensions, we obtain analytic results for the force-elongation curve and the width of transverse fluctuations. We compare quenched and annealed disorder and conclude that the former cannot always be reduced to a simple change in the stiffness of the pure system. We also discuss the effect of a random transverse force on the stretching response of a wormlike chain without spontaneous curvature.Comment: 5 pages, minor changes, added references, final version as published in PR

    Interaction of Sine-Gordon Kinks and Breathers With a Parity-Time-Symmetric Defect

    Get PDF
    The scattering of kinks and low-frequency breathers of the nonlinear sine-Gordon (SG) equation on a spatially localized parity-time-symmetric perturbation (defect) with a balanced gain and loss is investigated numerically. It is demonstrated that if a kink passes the defect, it always restores its initial momentum and energy, and the only effect of the interaction with the defect is a phase shift of the kink. A kink approaching the defect from the gain side always passes, while in the opposite case it must have sufficiently large initial momentum to pass through the defect instead of being trapped in the loss region. The kink phase shift and critical velocity are calculated by means of the collective variable method. Kink-kink (kink-antikink) collisions at the defect are also briefly considered, showing how their pairwise repulsive (respectively, attractive) interaction can modify the collisional outcome of a single kink within the pair with the defect. For the breather, the result of its interaction with the defect depends strongly on the breather parameters (velocity, frequency, and initial phase) and on the defect parameters. The breather can gain some energy from the defect and as a result potentially even split into a kink-antikink pair, or it can lose a part of its energy. Interestingly, the breather translational mode is very weakly affected by the dissipative perturbation, so that a breather penetrates more easily through the defect when it comes from the lossy side, than a kink. In all studied soliton-defect interactions, the energy loss to radiation of small-amplitude extended waves is negligible

    Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension

    Get PDF
    We study the impact of beyond Lee-Huang-Yang (LHY) physics, especially due to intercomponent correlations, in the ground state and the quench dynamics of one-dimensional quantum droplets with an ab initio nonperturbative approach. It is found that the droplet Gaussian-shaped configuration arising for intercomponent attractive couplings becomes narrower for stronger intracomponent repulsion and transits towards a flat-top structure either for larger particle numbers or weaker intercomponent attraction. Additionally, a harmonic trap prevents the flat-top formation. At the balance point where mean-field interactions cancel out, we show that a correlation hole is present in the few-particle limit of LHY fluids as well as for flat-top droplets. Introducing mass imbalance, droplets experience intercomponent mixing and excitation signatures are identified for larger masses. Monitoring the droplet expansion (breathing motion) upon considering interaction quenches to stronger (weaker) attractions, we explicate that beyond LHY correlations result in a reduced velocity (breathing frequency). Strikingly, the droplets feature two-body anticorrelations (correlations) at the same position (longer distances). Our findings pave the way for probing correlation-induced phenomena of droplet dynamics in current ultracold-atom experiments

    Asymptotic behavior of small solutions for the discrete nonlinear Schr\"odinger and Klein-Gordon equations

    Full text link
    We show decay estimates for the propagator of the discrete Schr\"odinger and Klein-Gordon equations in the form \norm{U(t)f}{l^\infty}\leq C (1+|t|)^{-d/3}\norm{f}{l^1}. This implies a corresponding (restricted) set of Strichartz estimates. Applications of the latter include the existence of excitation thresholds for certain regimes of the parameters and the decay of small initial data for relevant lpl^p norms. The analytical decay estimates are corroborated with numerical results.Comment: 13 pages, 4 figure

    A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games

    Full text link
    Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zero-sum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of O(d/ϵ2)\mathcal{O}(d/\epsilon^2) iterations to ϵ\epsilon-Nash equilibria in the 4d4^d-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as O(d/ϵ)\mathcal{O}(d/\epsilon) iterations to ϵ\epsilon-Nash equilibria. This quadratic speed-up relative to Jain and Watrous' original algorithm sets a new benchmark for computing ϵ\epsilon-Nash equilibria in quantum zero-sum games.Comment: 53 pages, 7 figures, QTML 2023 (Accepted (Long Talk)
    corecore