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We report the computational discovery of complex, topologically charged, and spectrally stable
states in three-dimensional multi-component nonlinear wave systems of nonlinear Schrödinger type.
While our computations relate to two-component atomic Bose-Einstein condensates in parabolic
traps, our methods can be broadly applied to high-dimensional, nonlinear systems of partial dif-
ferential equations. The combination of the so-called deflation technique with a careful selection
of initial guesses enables the computation of an unprecedented breadth of patterns, including ones
combining vortex lines, rings, stars, and “vortex labyrinths”. Despite their complexity, they may
be dynamically robust and amenable to experimental observation, as confirmed by Bogolyubov-de
Gennes spectral analysis and numerical evolution simulations.

Introduction.—The realm of nonlinear Schrödinger
models has been one of the principal pillars for the study
of nonlinear wave phenomena in dispersive systems [1–4].
The relevant applications span a wide range of fields in-
cluding nonlinear optical systems [5], water waves and
plasmas [6], as well as importantly over the last two
decades, the atomic physics setting of Bose–Einstein con-
densates (BECs) [7, 8]. In the latter setting, nonlinear
structures in the form of bright [9] and dark [10] solitary
waves, but also importantly topologically charged pat-
terns in the forms of vortices [11, 12] in two dimensions
(2D), as well as vortex rings, lines or knots, among oth-
ers [13–15] in three dimensions (3D) have played a central
role not only in theoretical and computational, but also in
experimental studies. Indeed, these have been connected
to notions such as persistent currents [16], turbulence and
associated cascades [17], emulations of an expanding uni-
verse in the lab [18], as well as Hawking radiation from
analogue black holes [19].

While the majority of the relevant contributions fo-
cused on single-component systems, such as single atomic
species BECs, gradually this situation is changing. Over
the past few years, it has been realized that coupled sys-
tems can be exploited to manipulate the spin degree of
freedom [20] in order to produce a wide variety of topo-
logical and non-topological, ground and excited state co-
herent structures, both in one dimension (1D) [21] and
higher dimensions [22]. However, developing numerical
methods to compute nonlinear waveforms in high dimen-
sions, such as 3D, poses considerable challenges, even in
single-component settings [23, 24]. This is even harder in
multi-component systems, where only a few groups have
attempted to provide a description of stability of singular
and non-singular patterns featuring vortices, monopoles,
and the so-called Alice rings [25–28].

In this work we report on a computational investi-
gation of the solutions of two-component atomic BECs
in a three-dimensional parabolic trap. The solutions
are discovered with a numerical technique called defla-

tion [29], which has been successfully applied to lower-
dimensional or single-component systems [24, 30, 31], but
has not been extended, to the best of our knowledge,
to multi-component 3D problems. We complement this
with a Bogolyubov-de Gennes (BdG) stability analysis
and transient numerical simulations. Surprisingly, and
contrary to what was found to be the case in the single-
component setting [24, 30], the multi-component system
allows for the dynamically robust existence of unexpected
and highly complex vortical states, including ones fea-
turing labyrinthine patterns. This suggests the potential
observability of the obtained states.

Setup & Method.—A mixture of two bosonic compo-
nents of the same atom species can be described, at
the mean-field level, by a system of two coupled Gross–
Pitaevskii (GP) equations [7, 8]. We refer to the two
components as − and +, and describe their distributions
by the wave-functions Φ± : D × R+ → C with spatial
domain D = [−6, 6]3 ⊂ R3. The model can be written in
its non-dimensional form as [4]:

i
∂Φ−
∂t

=− 1

2
∇2Φ−+(g11|Φ−|2+g12|Φ+|2)Φ−+V (r)Φ−,

i
∂Φ+

∂t
=− 1

2
∇2Φ++(g12|Φ−|2+g22|Φ+|2)Φ++V (r)Φ+,

with homogeneous Dirichlet boundary conditions on the
boundary of the domain D. The symmetric 2 × 2 coef-
ficient matrix (gij)1≤i,j≤2 characterizes the interactions
between the two components. Focusing on the case of
the hyperfine states of 87Rb, we use the parameter val-
ues g11 = 100.4/98.006, g12 = 1, and g22 = 95.44/98.006,
proposed in [32, Table 2]. The function V (r) = 1

2Ω2|r|2
is a parabolic external confining spherical potential with
strength Ω = 1, where |r|2 = x2 + y2 + z2. We
compute stationary solutions to the coupled GP equa-
tions by assuming the standing wave ansatz Φ±(r, t) =
φ±(r)e−iµ±t, and solving the following system of coupled
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equations:

−1

2
∇2φ−+(g11|φ−|2+g12|φ+|2)φ−+V (r)φ−−µ−φ−=0,

−1

2
∇2φ++(g12|φ−|2+g22|φ+|2)φ++V (r)φ+−µ+φ+ =0.

(1)

We discretize the real and imaginary components of φ−
and φ+ using cubic Lagrange finite elements defined on
a hexahedral mesh, with ten cells along each axis. The
use of a hexahedral mesh is desirable because the dis-
cretized problem inherits some of the reflective symme-
tries of the infinite-dimensional problem. Eq. (1) is solved
using the Firedrake finite element library [33] by combin-
ing Newton’s method with the MUMPS LU solver [34] via
PETSc [35] to solve the resulting linear equations.

We compute multiple solutions to Eq. (1) at param-
eters (µ−, µ+) = (4, 5) using deflation [29]. Defla-
tion allows us to identify new stationary solutions by
modifying the nonlinear problem solved to prevent the
discovery of known solutions by Newton’s method. If
F (φ−, φ+) denotes the coupled NLS operator associated
with Eq. (1) and (φ1−, φ1+) is a steady-state already
obtained, then we construct and solve a new problem
G(φ−, φ+) = M1(φ−, φ+)F (φ−, φ+). The deflation op-
erator M1 we employ is

M1 =

(
1

‖|φ−|2−|φ1−|2‖2
+1

)(
1

‖|φ+|2−|φ1+|2‖2
+1

)
,

where ‖·‖ is the H1(D)-norm. This operator prevents the
convergence of Newton’s method applied to G to the pre-
vious solution (φ1−, φ1+) (or its multiple by eiθ for any
θ ∈ R) since M1(φ−, φ+) → ∞ as (φ−, φ+) approaches
eiθ(φ1−, φ1+). This operator differs significantly from the
one previously used in the single component setting [24]
because it also deflates (φ1−, 0) and (0, φ1+) to reduce
the number of uninteresting solutions obtained. The de-
flation procedure can be iterated to deflate an arbitrary
number of known solutions {(φi−, φi+)}ni=1 by construct-
ing a problem G =Mn · · ·M1F .

Given the computational difficulty of the problem, a
key challenge is to initialize our search with suitable ini-
tial guesses to discover a large number of solutions with
complex patterns. Contrary to the single-component set-
ting [24], we found that exploiting linear low-density lim-
its of the system (1) is not an efficient strategy as it re-
quires a large number of Newton iterations to eventually
converge and results in simple steady-states. To achieve
our goal of discovering complex but experimentally ob-
servable solutions (see the discussion of their stability
below), we provided Newton’s method with a large num-
ber of initial guesses of the form (φ−, φ+) = (φ7/2, φ9/2)
by combining solutions to the nonlinear one-component
equation. Here φ7/2 and φ9/2 are steady-states of the
one-component problem emanating from the third and

fourth excited states at chemical potential µ = 7/2 and
µ = 9/2 previously discovered in [24].

Numerical Results.—We now illustrate some solutions
discovered with deflation. Our procedure leads to the
discovery of 150 distinct solutions to (1) with complex
structures. We then conducted a BdG stability analysis
(for which details can be found in the Supplementary Ma-
terial). If the latter features imaginary or complex eigen-
frequencies, the corresponding imaginary part ωi ≡ I(ω)
provides the instability’s growth rate. Guided by this
BdG stability analysis, we focus on the most physically
relevant ones and partition our findings into three broad
categories. The first set of our results is shown in Fig. 1
and captures a palette of unstable states partially identi-
fied in earlier works on one-component 3D systems. This
illustrates that already some complex building blocks can
be assembled into relevant stationary two-component so-
lutions that the method can identify without prior knowl-
edge of associated theoretical or numerical constructions.

FIG. 1. Selection of three unstable steady-states whose in-
dividual components have been identified in previous works
on the one-component GP equation. The top (resp. bottom)
row illustrates the − (resp. +) component of the solution. The
colors represent the argument of the solution at isocontour of
magnitude 0.2. Whenever appropriate, we display the density
isosurfaces at densities 0.2 to visualize the vortex structure of
the component.

We recognize in Fig. 1(a) a dipole solitary wave in
the second component coupled with a vortical pattern
in the first component. It is helpful to utilize a Carte-
sian notation |k,m, n〉, highlighting the number of nodes
that exist in each x, y, z direction, to classify these states
as a superposition of eigenstates near the linear limit.
In that notation, the first component consists (at low
density, i.e., near the linear limit) of |1, 0, 0〉 + i|0, 1, 0〉,
while the second one represents |0, 0, 1〉. This state is
unstable with a growth rate of ωi ≈ 0.81. Similarly un-
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stable (ωi ≈ 0.30) in panel (b) is a so-called Chladni
soliton [23, 36] of a one-species condensate in the sec-
ond component, coupled to a “ground state” (a nodeless
cloud) in the first component. Finally, panel (c) reveals
a single vortex pattern similar to panel (a) in the first
component, while the second is an example of a star pat-
tern, reminiscent of the ones described in [24, 37], with
the following linear combination close to the linear limit:
|2, 0, 0〉 − |0, 2, 0〉+ i[|2, 0, 0〉 − |0, 0, 2〉]. This state has a
growth rate of ωi ≈ 0.26 and is unstable.

Dynamically stable states.—A more elaborate set of
dynamically stable states has been identified and pre-
sented in Fig. 2. Here, we illustrate three distinct
states identified as spectrally stable over wide paramet-
ric regimes. More specifically, the parameter regime we
investigate is to linearly interpolate both chemical po-
tentials, µ− and µ+, towards their low-density limits at
µ0− and µ0+ ((µ0−, µ0+) = (1.5, 3.5) in Fig. 2(a) and
(3.5, 4.5) in Fig. 2(b,c)). Some of the resulting (widely)
stable states are straightforward to interpret. For in-
stance, in panel (a), we find a stable vortex star in the
second component [37] coupled to a ground state of the
first component. Two other stable states with simple con-
figurations are depicted in Fig. 1 of the Supplementary
Material.

FIG. 2. Selection of three stable states to the NLS system
with complex vortex structure on the second component (bot-
tom row).

While one can argue that the above states are perhaps
ones that can be expected in the two-component realm
based on our single-component experience, this is far
from obvious in the context of panels (b) and (c) of Fig. 2.
The structure of panel (b) contains, in turn, two vortex
lines in the first component that are coupled to a second
component featuring an S-shaped vortex attached to a
vortex ring, as well as two additional U-shaped vortex
lines. Interestingly, such a state in a single-component
was also obtained in our previous work [24] and was
weakly unstable with a growth rate of ωi ≈ 5 × 10−2

FIG. 3. Continuation and stability analysis of the states pre-
sented in Figs. 2(b) and 4 (at time T = 0) to the linear (low-
density) limit as the chemical potentials (µ−, µ+) linearly ap-
proach (3.5, 4.5). Panels (a) and (b) report the atomic num-
bers (N−, N+) of the components of the states illustrated in
Fig. 2(b) (blue solid line) and Fig. 4 (red dashed line) as a
function of the chemical potentials. Panels (c) and (d) re-
spectively showcase the stability and weak instability of the
states of Figs. 2(b) and 4.

at µ = 5, illustrating that coupled systems may stabilize
BEC configurations. Fig. 2(c) represents an especially
complex, topologically charged configuration, where the
vortex ring of the first component connects to an anti-
symmetric pattern reminiscent of a pair of vortex-based
slings, each held by a vortex line. Importantly, despite
the elaborate multi-vortical structure of these two config-
urations, our computations identify them as a spectrally
and dynamically stable. As an illustration, we report
in Fig. 3(a,b) the continuation of the atomic numbers
(N−, N+) for each of the two components of the state
presented in Fig. 2(b) as a function of the chemical po-
tential µ+. The real part of the relevant eigenfrequencies
in the bottom left panel of Fig. 3(c) showcase the excita-
tion frequencies, while the absence of imaginary eigenfre-
quencies (for most parameter values) in the bottom right
panel indicates stability in our BdG analysis. This anal-
ysis is performed for all the stable states discussed above
and further analyzed in the Supplementary Material.
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Weakly unstable states.—In addition to these stable
states, our deflation search yields a considerable wealth
of weakly unstable states such as the one shown in Fig. 4
at time T = 0. Here, we observe a pair of vortex lines in
the first component, coupled to a labyrinthine network in-
volving multiple vortex rings, as well as S-shaped and U-
shaped vortices (see the bottom row). Remarkably given
the complexity of the state, yet in line with the BdG sta-
bility analysis, our dynamical simulations [38], involving
hundreds of oscillation periods of the trap, identifies the
state as only very weakly unstable, with a particularly
small growth rate of ωi ≈ 3.1× 10−2 (see Figs. 3(d) and
4, and the movie in the Supplementary Material). This
is only one of many such states that our detailed time-
integration simulations, which conserve N± and the en-
ergy to machine precision, appear to preserve over time
scales that would be relevant for experimental observ-
ability. Indeed, we present in Fig. 5 a selection of exotic
weakly unstable states whose vortex structures involve
structures well beyond the complexity of simple vortex
rings and lines and rather extend to labyrinthine pat-
terns of connected vorticity isocontours. The structures
are sustained over a long time period with growth rates
bounded by ωi < 6.7 × 10−2 at chemical potential val-
ues (µ−, µ+) = (4, 5). Despite their complexity, all of
these configurations are expected to be experimentally
observable following our spectral stability analysis.

FIG. 4. Snapshots of the time evolution of a weakly unstable
state, initially perturbed along its most unstable eigendirec-
tion. The top and bottom rows respectively display the first
and second components of the state.

Conclusions & Future Work.—We have discovered a
wealth of complex states to the two-component 3D GP
equations. The deflation approach allowed us to retrieve
a number of states that, to the best of our knowledge, had
not been obtained previously, despite extensive efforts in
this direction [4, 21, 22]. Even more importantly, several
configurations involving combined vortical patterns, such
as ones with S-shaped, U-shaped, and ring-shaped vortex

FIG. 5. Exotic weakly unstable solutions discovered by defla-
tion which are within windows of experimental observability
with growth rate ωr < 6.7 × 10−2.

patterns were found to be stable and, hence potentially
accessible by state-of-the-art experimental techniques.

Our deflation technique enables the identification of
complex (and possibly topologically-charged) patterns in
a variety of nonlinear, elliptic partial differential equa-
tion problems of the Schrödinger class. The results
were proposed in the experimentally tractable platform of
atomic Bose–Einstein condensates. However, other set-
tings where the nonlinear Schrödinger equation is rele-
vant can be equally well applicable. In fact, the same nu-
merical techniques could be broadly applicable to a vari-
ety of other problems, such as reaction-diffusion ones [39],
among others.

The present work paves the way for numerous further
possibilities. On the one hand, the theoretical under-
standing of such complex states, including from the lin-
ear limit of small amplitude, is a feature which has been
explored in 1D and 2D settings [4], but not systemati-
cally in the 3D case, to the best of our knowledge. This
is due to the computational complexity of the problem.
Furthermore, while we have restricted our attention to
the two-component pseudo-spinor case in this work, a
significant volume of experiments has been recently fo-
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cusing on 3-component spinor settings [20, 22]. It would
be particularly interesting to extend the ideas presented
herein in the latter setting.

Acknowledgments. This work is supported by the
EPSRC Centre For Doctoral Training in Industrially
Focused Mathematical Modelling (EP/L015803/1) in
collaboration with Simula Research Laboratory (N.B.)
and a London Mathematical Society Undergraduate Re-
search Bursary URB-2021-21 (I.N.). This material is
based upon work supported by the UK Engineering
and Physical Sciences Research Council under Grants
EP/W026163/1 and EP/R029423/1 (P.E.F.) and the US
National Science Foundation under Grants No. PHY-
2110030 (P.G.K.). The authors are particularly grateful
to Prof. E. Charalampidis for his insights and earlier col-
laboration.

∗ boulle@maths.ox.ac.uk
† newell@maths.ox.ac.uk
‡ patrick.farrell@maths.ox.ac.uk
§ kevrekid@math.umass.edu

[1] C. Sulem and P. L. Sulem, The nonlinear Schrödinger
equation: self-focusing and wave collapse (Springer, New
York, 1999).

[2] M. Ablowitz, B. Prinari, and A. Trubatch, Discrete and
continuous nonlinear Schrödinger systems (Cambridge
University Press, Cambridge, 2004).

[3] M. J. Ablowitz, Nonlinear dispersive waves (Cambridge
University Press, Cambridge, 2011).

[4] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-
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K. Helmerson, and W. D. Phillips, Observation of per-
sistent flow of a Bose–Einstein condensate in a toroidal
trap, Phys. Rev. Lett. 99, 260401 (2007).

[17] M. C. Tsatsos, P. E. Tavares, A. Cidrim, A. R. Fritsch,
M. A. Caracanhas, F. E. A. dos Santos, C. F. Barenghi,
and V. S. Bagnato, Quantum turbulence in trapped
atomic Bose–Einstein condensates, Phys. Rep. 622, 1
(2016).

[18] S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, and
G. K. Campbell, A rapidly expanding Bose–Einstein con-
densate: an expanding universe in the lab, Phys. Rev. X
8, 021021 (2018).

[19] V. Kolobov, K. Golubkov, J. Muñoz de Nova, and
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[24] N. Boullé, E. G. Charalampidis, P. E. Farrell, and
P. G. Kevrekidis, Deflation-based identification of nonlin-
ear excitations of the three-dimensional Gross-Pitaevskii
equation, Phys. Rev. A 102, 053307 (2020).

[25] J. Lovegrove, M. O. Borgh, and J. Ruostekoski, Ener-
getically stable singular vortex cores in an atomic spin-
1 Bose–Einstein condensate, Phys. Rev. A 86, 013613
(2012).

[26] J. Lovegrove, M. O. Borgh, and J. Ruostekoski, Stability
and internal structure of vortices in spin-1 Bose–Einstein
condensates with conserved magnetization, Phys. Rev. A
93, 033633 (2016).

[27] T. Mithun, R. Carretero-González, E. G. Charalampidis,
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halache, and L. Torner, Three-dimensional parallel vor-
tex rings in Bose–Einstein condensates, Phys. Rev. A 70,
033605 (2004).

[38] M. Delfour, M. Fortin, and G. Payre, Finite-difference so-
lutions of a non-linear Schrödinger equation, J. Comput.
Phys. 44, 277 (1981).

[39] J. Smoller, Shock waves and reaction–diffusion equations
(Springer-Verlag, New York, 1983).



Supplementary Material for “Two-Component 3D Atomic Bose-Einstein Condensates
Support Complex Stable Patterns”
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STABLE STATES AND CONTINUATION

As described in the main text, deflation identified five stable, topologically charged solutions to the nonlinear
Schrödinger system (NLS) at chemical potentials (µ−, µ+) = (4, 5). The two states which are not analyzed in the
paper are displayed in Fig. 1. Fig. 1(a) features a fundamental state in the first component that is complemented by
a vortex of topological charge l = 2 in the second component. Fig. 1(b) shows a vortex of topological charge l = 1 in
the second component harboring an effective bright soliton within a vortex-bright line configuration [1]. As we will
see in the next section and Fig. 2(c,d), these states are stable over a wide parametric regime of the chemical potentials
up to the linear (low-density) limit.

FIG. 1. The two remaining stable states to the NLS system discovered by deflation (in addition to those shown in Fig. 2 of the
main manuscript). The top (resp. bottom) row illustrates the - (resp. +) component of the solution. The colors represent the
argument of the solution at isocontour of magnitude 0.2.

Once a steady state has been discovered by deflation at parameters (µ−, µ+) = (4, 5), we continue it to the linear
limit at (µ0−, µ0+) by performing a linear interpolation in both components. As µ+ (the chemical potential of the
first component) decreases from µinit+ to µ0+, we want µ− (the chemical potential of the second component) to vary
from µinit− to µ0−. This yields the following linear interpolation equation for µ−:

µ− = µinit−
µ+ − µ0+

µinit+ − µ0+
+ µ0−

µinit+ − µ+

µinit+ − µ0+
. (1)

After identifying the chemical potential parameters µ0− and µ0+ at which the two components emerge, we then
discretize the interval [µ0+, µinit+] with regular step-size ∆µ = 10−2, where µinit+ = 5. A steady state is continued to
the linear limit as µ+ goes from µinit+ → µ0+ (and similarly for µ− using Eq. (1)) by solving the NLS system using
the solution at the previous step in the chemical potential as initial guess. We then display the continuation of the
state (φ−, φ+) by reporting the atomic number of each component:

N− =

∫

Ω

|φ−|2 dx, N+ =

∫

Ω

|φ+|2 dx,

as a function of the parameter µ+. As the state is continued towards the low-density limit at (µ0−, µ0+), the atomic
numbers N− and N+ converge to zero.
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STABILITY ANALYSIS

We now provide more details about the stability computations of the discovered solutions to the time-dependent
NLS system

i
∂Φ−
∂t

=− 1

2
∇2Φ−+(g11|Φ−|2+g12|Φ+|2)Φ−+V (r)Φ−,

i
∂Φ+

∂t
=− 1

2
∇2Φ++(g12|Φ−|2+g22|Φ+|2)Φ++V (r)Φ+.

(2)

Once a steady-state φ0
±(r) to Eq. (2) has been identified by deflation, we perform a Bogolyubov–de Gennes (BdG)

spectral stability analysis [2–4] by using the following perturbation ansatz [5],

Φ̃−(r, t) = e−iµ−t
[
φ0
− + ε

(
a(r)eiωt + b∗(r)e−iω

∗t
)]
,

Φ̃+(r, t) = e−iµ+t
[
φ0

+ + ε
(
c(r)eiωt + d∗(r)e−iω

∗t
)]
,

(3)

where ω ∈ C is the eigenfrequency, ε � 1 is a small parameter, and ∗ denotes the complex conjugate. Inserting this
equation into Eq. (2) yields an eigenvalue problem at order O(ε), which we write in matrix form as




A11 A12 A13 A14

−A∗12 −A11 −A∗14 −A∗13

A∗13 A14 A33 A34

−A∗14 −A13 −A∗34 −A33







a
b
c
d


 = ρ




a
b
c
d


 , (4)

with eigenvalue ρ = −ω and eigenvector V = [a b c d]
>

. The matrix elements in Eq. (4) are given by

A11 = −1

2
∇2 +

(
2g11|φ0

−|2 + g12|φ0
+|2
)

+ V (r)− µ−, A12 = g11

(
φ0
−
)2
,

A33 = −1

2
∇2 +

(
g12|φ0

−|2 + 2g22|φ0
+|2
)

+ V (r)− µ+, A34 = g22

(
φ0

+

)2
,

A13 = g12 φ
0
−
(
φ0

+

)∗
, A14 = g12 φ

0
−φ

0
+.

Similar to [6], we decompose Eq. (4) into real and imaginary parts to solve the discretized 8 × 8 block matrix
eigenvalue problem. We employ the same piecewise cubic finite element discretization as the one used for solving
the NLS system and solve the resulting eigenvalue problem using a Krylov–Schur algorithm with a shift-and-invert
spectral transformation implemented [7] in the Scalable Library for Eigenvalue Problem Computations (SLEPc) [8].
We then decompose the eigenfrequencies ω ∈ C into real and imaginary parts as ω = ωr + iωi. A state is considered
spectrally stable at the chemical potentials (µ−, µ+) if the eigenfrequencies have imaginary parts satisfying |ωi| < 10−3.
We report in panels (a) to (d) of Fig. 2 the atomic numbers and stability analysis of the stable states displayed in
Fig. 2(a,c) of the main text and Fig. 1(a,b), respectively. We observe that all the five states identified by deflation
described as stable in the main text are stable over a wide parametric regime of the chemical potentials, up to the
linear limit.

DYNAMICAL SIMULATIONS

To verify the spectral stability or weak instability of a state φ0
± discovered by deflation, we integrate the time-

dependent NLS system (2) until t = 240 by perturbing φ0
± along its most unstable eigendirection similarly to Eq. (3).

We then select ε = 10−2 and use ψ
(0)
± (r) := Φ̃±(r, t = 0) as initial state for the time-integration of the system. Let

∆t = 10−2 be the time-step and ψ
(n)
± (r) = ψ±(r, n∆t) be the solution to (2) at time tn = n∆t. The time discretization

of the system is performed using a modified Crank-Nicolson method [9] such that the solution ψ
(n+1)
± at time tn+1

satisfies

i
ψ

(n+1)
− − ψ(n)

−
∆t

=

(
−1

2
∇2 + V (r)

)
ψ̃

(n)
− +

(
g11
|ψ(n+1)
− |2 + |ψ(n)

− |2
2

+ g12
|ψ(n+1)

+ |2 + |ψ(n)
+ |2

2

)
ψ̃

(n)
− , (5a)

i
ψ

(n+1)
+ − ψ(n)

+

∆t
=

(
−1

2
∇2 + V (r)

)
ψ̃

(n)
+ +

(
g12
|ψ(n+1)
− |2 + |ψ(n)

− |2
2

+ g22
|ψ(n+1)

+ |2 + |ψ(n)
+ |2

2

)
ψ̃

(n)
+ . (5b)



3

FIG. 2. Continuation and stability analysis of the states presented in Fig. 2(a,c) of the main text and Fig. 1 of the Supple-
mentary Material in panels (a)-(d), respectively. Each panel features the atomic numbers (N−, N+) of the components of the
state as well as the real and imaginary parts of the associated eigenfrequencies. The linear limit for the states presented in
panels (a) to (d) are respectively (µ−, µ+) → (1.5, 3.5), (3.5, 4.5), (1.5, 3.5), and (1.5, 2.5).

where ψ̃
(n)
− = (ψ

(n+1)
− + ψ

(n)
− )/2 and ψ̃

(n)
+ = (ψ

(n+1)
+ + ψ

(n)
+ )/2.

As for the single component nonlinear Schrödinger equation [9], one can show that this time-stepping scheme
conserves the atomic number of each component of the state, as well as the energy E , defined as

E(ψ−, ψ+) =

∫

Ω

1

4

(
|∇ψ−|2 + |∇ψ+|2

)
+

1

2
V (r)(|ψ−|2 + |ψ+|2) +

1

4
g11|ψ−|4 +

1

4
g22|ψ+|4 +

1

2
g12|ψ−ψ+|2 dx. (6)

Hence, multiplying Eqs. (5a) and (5b) by
¯̃
ψ

(n)
− and

¯̃
ψ

(n)
+ , taking the imaginary part, and integrating over the domain

Ω yields the conservation of the atomic numbers since we obtain

∫

Ω

|ψ(n+1)
− |2 dx =

∫

Ω

|ψ(n)
− |2 dx, and

∫

Ω

|ψ(n+1)
+ |2 dx =

∫

Ω

|ψ(n)
+ |2 dx.

We now show that the energy of the state is conserved by the time-stepping scheme. To do so, we first multiply

Eqs. (5a) and (5b) by (ψ̄
(n+1)
− − ψ̄(n)

− ) and (ψ̄
(n+1)
+ − ψ̄(n)

+ ), take the real part of the resulting equations, and integrate



4

over the domain to obtain

−1

4

∫

Ω

|∇ψ(n+1)
− |2 − |∇ψ(n)

− |2 dx− 1

2

∫

Ω

V (r)(|ψ(n+1)
− |2 − |ψ(n)

− |2) dx =

1

4

∫

Ω

(
g11(|ψ(n+1)

− |2 + |ψ(n)
− |2) + g12(|ψ(n+1)

+ |2 + |ψ(n)
+ |2)

)(
|ψ(n+1)
− |2 − |ψ(n)

− |2
)

dx, (7a)

−1

4

∫

Ω

|∇ψ(n+1)
+ |2 − |∇ψ(n)

+ |2dx−
1

2

∫

Ω

V (r)(|ψ(n+1)
+ |2 − |ψ(n)

+ |2) dx =

1

4

∫

Ω

(
g12(|ψ(n+1)

− |2 + |ψ(n)
− |2) + g22(|ψ(n+1)

+ |2 + |ψ(n)
+ |2)

)(
|ψ(n+1)

+ |2 − |ψ(n)
+ |2

)
dx. (7b)

The right-hand side of Eq. (7a) is equivalent to

1

4

∫

Ω

(
g11(|ψ(n+1)

− |2 + |ψ(n)
− |2) + g12(|ψ(n+1)

+ |2 + |ψ(n)
+ |2)

)(
|ψ(n+1)
− |2 − |ψ(n)

− |2
)

dx =

1

4

∫

Ω

g11

(
|ψ(n+1)
− |4 − |ψ(n)

− |4
)

+ g12

(
|ψ(n+1)

+ ψ
(n+1)
− |2 − |ψ(n)

+ ψ
(n)
− |2 − |ψ(n+1)

+ ψ
(n)
− |2 + |ψ(n)

+ ψ
(n+1)
− |2

)
dx.

Similarly, the right-hand side of Eq. (7b) yields

1

4

∫

Ω

(
g12(|ψ(n+1)

− |2 + |ψ(n)
− |2) + g22(|ψ(n+1)

+ |2 + |ψ(n)
+ |2)

)(
|ψ(n+1)

+ |2 − |ψ(n)
+ |2

)
dx =

1

4

∫

Ω

g22

(
|ψ(n+1)

+ |4 − |ψ(n)
+ |4

)
+ g12

(
|ψ(n+1)

+ ψ
(n+1)
− |2 − |ψ(n)

+ ψ
(n)
− |2 − |ψ(n+1)

− ψ
(n)
+ |2 + |ψ(n)

− ψ
(n+1)
+ |2

)
dx.

Therefore, after summing Eqs. (7a) and (7b), we find that the energy is conserved by the time-stepping scheme as

E(ψ
(n+1)
− , ψ

(n+1)
+ ) = E(ψ

(n)
− , ψ

(n)
+ ).
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