154,312 research outputs found

    Equation-free dynamic renormalization in a glassy compaction model

    Get PDF
    Combining dynamic renormalization with equation-free computational tools, we study the apparently self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time.Comment: 4 pages, 4 figures (Minor Modifications; Submitted Version

    On reduced density matrices for disjoint subsystems

    Full text link
    We show that spin and fermion representations for solvable quantum chains lead in general to different reduced density matrices if the subsystem is not singly connected. We study the effect for two sites in XX and XY chains as well as for sublattices in XX and transverse Ising chains.Comment: 10 pages, 4 figure

    Gravitational Laser Back-Scattering

    Full text link
    A possible way of producing gravitons in the laboratory is investigated. We evaluate the cross section electron + photon \rightarrow electron + graviton in the framework of linearized gravitation, and analyse this reaction considering the photon coming either from a laser beam or from a Compton back-scattering process.Comment: 11 pages, 2 figures (available upon request), RevTeX, IFT-P.03/9

    Particle number conservation in quantum many-body simulations with matrix product operators

    Full text link
    Incorporating conservation laws explicitly into matrix product states (MPS) has proven to make numerical simulations of quantum many-body systems much less resources consuming. We will discuss here, to what extent this concept can be used in simulation where the dynamically evolving entities are matrix product operators (MPO). Quite counter-intuitively the expectation of gaining in speed by sacrificing information about all but a single symmetry sector is not in all cases fulfilled. It turns out that in this case often the entanglement imposed by the global constraint of fixed particle number is the limiting factor.Comment: minor changes, 18 pages, 5 figure

    Condensation of the atomic relaxation vibrations in lead-magnesium-niobate at T=TT=T^*

    Full text link
    We present neutron diffraction, dielectric permittivity and photoconductivity measurements, evidencing that lead-magnesium niobate experiences a diffuse phase transformation between the spherical glass and quadrupole glass phases, in the temperature interval between 400 K and 500 K, with the quadrupole phase possessing extremely high magnitudes of dielectric permittivity. Our analysis shows that the integral diffuse scattering intensity may serve as an order parameter for this transformation. Our experimental dielectric permittivity data support this choice. These data are important for the aplications desiring giant dielectric responses, in a wide temperature intervals and not related to electron's excitations.Comment: 6 figure
    corecore