249 research outputs found

    Vortex simulations of the Rayleigh–Taylor instability

    Get PDF
    A vortex technique capable of calculating the Rayleigh–Taylor instability to large amplitudes in inviscid, incompressible, layered flows is introduced. The results show the formation of a steady‐state bubble at large times, whose velocity is in agreement with the theory of Birkhoff and Carter. It is shown that the spike acceleration can exceed free fall, as suggested recently by Menikoff and Zemach. Results are also presented for instability at various Atwood ratios and for fluids having several layers

    Direct Numerical Simulation Tests of Eddy Viscosity in Two Dimensions

    Full text link
    Two-parametric eddy viscosity (TPEV) and other spectral characteristics of two-dimensional (2D) turbulence in the energy transfer sub-range are calculated from direct numerical simulation (DNS) with 5122^2 resolution. The DNS-based TPEV is compared with those calculated from the test field model (TFM) and from the renormalization group (RG) theory. Very good agreement between all three results is observed.Comment: 9 pages (RevTeX) and 5 figures, published in Phys. Fluids 6, 2548 (1994

    Vibronic "Rabi resonances" in harmonic and hard-wall ion-traps for arbitrary laser intensity and detuning

    Get PDF
    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well isolated "Rabi Resonances", where the detuning-adapted Rabi frequency coincides with the level spacing of the vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined.Comment: 7 pages, 4 figure

    Fluctuation-response relation in turbulent systems

    Full text link
    We address the problem of measuring time-properties of Response Functions (Green functions) in Gaussian models (Orszag-McLaughin) and strongly non-Gaussian models (shell models for turbulence). We introduce the concept of {\it halving time statistics} to have a statistically stable tool to quantify the time decay of Response Functions and Generalized Response Functions of high order. We show numerically that in shell models for three dimensional turbulence Response Functions are inertial range quantities. This is a strong indication that the invariant measure describing the shell-velocity fluctuations is characterized by short range interactions between neighboring shells

    Thermodynamic Properties and Phase Transitions in a Mean-Field Ising Spin Glass on Lattice Gas: the Random Blume-Emery-Griffiths-Capel Model

    Full text link
    The study of the mean-field static solution of the Random Blume-Emery-Griffiths-Capel model, an Ising-spin lattice gas with quenched random magnetic interaction, is performed. The model exhibits a paramagnetic phase, described by a stable Replica Symmetric solution. When the temperature is decreased or the density increases, the system undergoes a phase transition to a Full Replica Symmetry Breaking spin-glass phase. The nature of the transition can be either of the second order (like in the Sherrington-Kirkpatrick model) or, at temperature below a given critical value, of the first order in the Ehrenfest sense, with a discontinuous jump of the order parameter and accompanied by a latent heat. In this last case coexistence of phases takes place. The thermodynamics is worked out in the Full Replica Symmetry Breaking scheme, and the relative Parisi equations are solved using a pseudo-spectral method down to zero temperature.Comment: 24 pages, 12 figure

    Transitionless quantum drivings for the harmonic oscillator

    Full text link
    Two methods to change a quantum harmonic oscillator frequency without transitions in a finite time are described and compared. The first method, a transitionless-tracking algorithm, makes use of a generalized harmonic oscillator and a non-local potential. The second method, based on engineering an invariant of motion, only modifies the harmonic frequency in time, keeping the potential local at all times.Comment: 11 pages, 1 figure. Submitted for publicatio

    Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells

    Get PDF
    Two-dimensional numerical simulations of ablatively accelerated thin-shell fusion targets, susceptible to rupture and failure by Rayleigh–Taylor instability, are presented. The results show that nonlinear effects of Rayleigh–Taylor instability are manifested in the dynamics of the "bubble" (head of the nonlinear fluid perturbation) rather than in the dynamics of the spike (tail of the perturbation). The role of multiwavelength perturbations on the shell is clarified, and rules are presented to predict the dominant nonlinear mode-mode interactions which limit shell performance. It is also shown that the essential dynamics of strongly driven flows are governed by the classical Rayleigh–Taylor instability of an ideal, incompressible, thin fluid layer

    On self-sustaining processes in Rayleigh-stable rotating plane Couette flows and subcritical transition to turbulence in accretion disks

    Get PDF
    Subcritical transition to turbulence in Keplerian accretion disks is still a controversial issue and some theoretical progress is required in order to determine whether or not this scenario provides a plausible explanation for the origin of angular momentum transport in non-magnetized accretion disks. Motivated by the recent discoveries of exact nonlinear steady self-sustaining solutions in linearly stable non-rotating shear flows, we attempt to compute similar solutions in Rayleigh-stable rotating plane Couette flows and to identify transition mechanisms in such flows by combining nonlinear continuation methods and asymptotic theory. We obtain exact nonlinear solutions for Rayleigh-stable cyclonic regimes but show that it is not possible to compute solutions for Rayleigh-stable anticyclonic regimes, including Keplerian flow, using similar techniques. We also present asymptotic descriptions of these various problems at large Reynolds numbers that provide some insight into the differences between the non-rotating and Rayleigh-stable anticyclonic regimes and derive some necessary conditions for mechanisms analogous to the non-rotating self-sustaining process to be present in flows on the Rayleigh line. Our results demonstrate that subcritical transition mechanisms cannot be identified in wall-bounded Rayleigh-stable anticyclonic shear flows by transposing directly the phenomenology of subcritical transition in cyclonic and non-rotating wall-bounded shear flows. Asymptotic developments, however, leave open the possibility that nonlinear self-sustaining solutions may exist in unbounded or periodic flows on the Rayleigh line. These could serve as a starting point to discover solutions in Rayleigh-stable flows, but the nonlinear stability of Keplerian accretion disks remains to be determined.Comment: 16 pages, 12 figures. Accepted for publication in A&

    Large eddy simulation of two-dimensional isotropic turbulence

    Full text link
    Large eddy simulation (LES) of forced, homogeneous, isotropic, two-dimensional (2D) turbulence in the energy transfer subrange is the subject of this paper. A difficulty specific to this LES and its subgrid scale (SGS) representation is in that the energy source resides in high wave number modes excluded in simulations. Therefore, the SGS scheme in this case should assume the function of the energy source. In addition, the controversial requirements to ensure direct enstrophy transfer and inverse energy transfer make the conventional scheme of positive and dissipative eddy viscosity inapplicable to 2D turbulence. It is shown that these requirements can be reconciled by utilizing a two-parametric viscosity introduced by Kraichnan (1976) that accounts for the energy and enstrophy exchange between the resolved and subgrid scale modes in a way consistent with the dynamics of 2D turbulence; it is negative on large scales, positive on small scales and complies with the basic conservation laws for energy and enstrophy. Different implementations of the two-parametric viscosity for LES of 2D turbulence were considered. It was found that if kept constant, this viscosity results in unstable numerical scheme. Therefore, another scheme was advanced in which the two-parametric viscosity depends on the flow field. In addition, to extend simulations beyond the limits imposed by the finiteness of computational domain, a large scale drag was introduced. The resulting LES exhibited remarkable and fast convergence to the solution obtained in the preceding direct numerical simulations (DNS) by Chekhlov et al. (1994) while the flow parameters were in good agreement with their DNS counterparts. Also, good agreement with the Kolmogorov theory was found. This LES could be continued virtually indefinitely. Then, a simplifiedComment: 34 pages plain tex + 18 postscript figures separately, uses auxilary djnlx.tex fil

    Mean- Field Approximation and a Small Parameter in Turbulence Theory

    Full text link
    Numerical and physical experiments on two-dimensional (2d) turbulence show that the differences of transverse components of velocity field are well described by a gaussian statistics and Kolmogorov scaling exponents. In this case the dissipation fluctuations are irrelevant in the limit of small viscosity. In general, one can assume existence of critical space-dimensionality d=dcd=d_{c}, at which the energy flux and all odd-order moments of velocity difference change sign and the dissipation fluctuations become dynamically unimportant. At d<dcd<d_{c} the flow can be described by the ``mean-field theory'', leading to the observed gaussian statistics and Kolmogorov scaling of transverse velocity differences. It is shown that in the vicinity of d=dcd=d_{c} the ratio of the relaxation and translation characteristic times decreases to zero, thus giving rise to a small parameter of the theory. The expressions for pressure and dissipation contributions to the exact equation for the generating function of transverse velocity differences are derived in the vicinity of d=dcd=d_{c}. The resulting equation describes experimental data on two-dimensional turbulence and demonstrate onset of intermittency as d−dc>0d-d_{c}>0 and r/L→0r/L\to 0 in three-dimensional flows in close agreement with experimental data. In addition, some new exact relations between correlation functions of velocity differences are derived. It is also predicted that the single-point pdf of transverse velocity difference in developing as well as in the large-scale stabilized two-dimensional turbulence is a gaussian.Comment: 25 pages, 1 figur
    • 

    corecore