3,142 research outputs found

    Experimental band structure of the nearly half-metallic CuCr2_2Se4_4: An optical and magneto-optical study

    Get PDF
    Diagonal and off-diagonal optical conductivity spectra have been determined form the measured reflectivity and magneto-optical Kerr effect (MOKE) over a broad range of photon energy in the itinerant ferromagnetic phase of CuCr2_2Se4_4 at various temperatures down to T=10 K. Besides the low-energy metallic contribution and the lower-lying charge transfer transition at EE\approx2 eV, a sharp and distinct optical transition was observed in the mid-infrared region around EE==0.5 eV with huge magneto-optical activity. This excitation is attributed to a parity allowed transition through the Se-Cr hybridization-induced gap in the majority spin channel. The large off-diagonal conductivity is explained by the high spin polarization in the vicinity of the Fermi level and the strong spin-orbit interaction for the related charge carriers. The results are discussed in connection with band structure calculations

    Predict-prevent control method for perturbed excitable systems

    Get PDF
    We present a control method based on two steps: prediction and prevention. For prediction we use the anticipated synchronization scheme, considering unidirectional coupling between excitable systems in a master-slave configuration. The master is the perturbed system to be controlled, meanwhile the slave is an auxiliary system which is used to predict the master's behavior. We demonstrate theoretically and experimentally that an efficient control may be achieved.Comment: 4 pages, 5 figure

    Effects of Fermi surface and superconducting gap structure in the field-rotational experiments: A possible explanation of the cusp-like singularity in YNi2_2B2_2C

    Full text link
    We have studied the field-orientational dependence of zero-energy density of states (FODOS) for a series of systems with different Fermi surface and superconducting gap structures. Instead of phenomenological Doppler-shift method, we use an approximate analytical solution of Eilenberger equation together with self-consistent determination of order parameter and a variational treatment of vortex lattice. First, we compare zero-energy density of states (ZEDOS) when a magnetic field is applied in the nodal direction (νnode(0)\nu_{node}(0)) and in the antinodal direction (νanti(0)\nu_{anti}(0)), by taking account of the field-angle dependence of order parameter. As a result, we found that there exists a crossover magnetic field HH^* so that νanti(0)>νnode(0)\nu_{anti}(0) > \nu_{node}(0) for Hνanti(0)H \nu_{anti}(0) for H>HH > H^*, consistent with our previous analyses. Next, we showed that HH^* and the shape of FODOS are determined by contribution from the small part of Fermi surface where Fermi velocity is parallel to field-rotational plane. In particular, we found that HH^* is lowered and FODOS has broader minima, when a superconducting gap has point nodes, in contrast to the result of the Doppler-shift method. We also studied the effects of in-plane anisotropy of Fermi surface. We found that in-plane anisotropy of quasi-two dimensional Fermi surface sometimes becomes larger than the effects of Doppler-shift and can destroy the Doppler-shift predominant region. In particular, this tendency is strong in a multi-band system where superconducting coherence lengths are isotropic. Finally, we addressed the problem of cusp-like singularity in YNi2_2B2_2C and present a possible explanation of this phenomenon.Comment: 13pages, 23figure

    Spin-Gap Phase in the One-Dimensional t-J-J' Model

    Full text link
    The spin-gap phase of the one-dimensional t-J-J' model is studied by the level-crossing of the singlet and the triplet excitation spectra. The phase boundary obtained between the Tomonaga-Luttinger and the spin-gap phases is remarkably consistent with the analytical results at the J,J0J,J'\to 0 and the low-density limits discussed by Ogata et al. The spin-gap phase has a single domain in the phase diagram even if the spin gap opens at half-filling. The phase boundary coincides with the Kρ=1K_{\rho}=1 line where the Tomonaga-Luttinger liquid behaves as free electrons, in the low-density region. The relation between our method and the solution of the two-electron problem is also discussed.Comment: 4 pages(JPSJ.sty), 5 figures(EPS), to appear in J. Phys. Soc. Jpn. 67, No.3 (1998

    Nuclear-spin qubits interaction in mesoscopic wires and rings

    Full text link
    Theoretical study of the indirect coupling of nuclear spins (qubits) embedded into a mesoscopic ring and in a finite length quantum wire in a magnetic field is presented. It is found that the hyperfine interaction, via the conduction electrons, between nuclear spins exhibits sharp maxima as function of the magnetic field and nuclear spin positions. This phenomenon can be used for manipulation of qubits with almost atomic precision. Experimental feasibility and implications for quantum logics devices is discussed.Comment: 3 figures, 12 page

    Generalised Probabilistic Control Design for Uncertain Stochastic Control Systems

    Get PDF
    In this paper a novel generalised fully probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented for a linear Gaussian uncertain class of stochastic systems. A single layer neural network is used to approximate the probability density function of the system dynamics. The generalised probabilistic control law is obtained by solving the recurrence equation of dynamic programming to the fully probabilistic design control problem while taking into consideration the dependency of the parameters of the estimated probability density function of the system dynamics on the input values. It is shown to be of the class of cautious type controllers which accurately minimises the value of the Kullback-Leibler divergence without disregarding the variance of the model prediction as an element to be minimised. Comparison of theoretical and numerical results obtained from the F-16 fighter aircraft application with existing state-of-the-art demonstrates the effectiveness of the proposed method

    Asynchronous Graph Pattern Matching on Multiprocessor Systems

    Full text link
    Pattern matching on large graphs is the foundation for a variety of application domains. Strict latency requirements and continuously increasing graph sizes demand the usage of highly parallel in-memory graph processing engines that need to consider non-uniform memory access (NUMA) and concurrency issues to scale up on modern multiprocessor systems. To tackle these aspects, graph partitioning becomes increasingly important. Hence, we present a technique to process graph pattern matching on NUMA systems in this paper. As a scalable pattern matching processing infrastructure, we leverage a data-oriented architecture that preserves data locality and minimizes concurrency-related bottlenecks on NUMA systems. We show in detail, how graph pattern matching can be asynchronously processed on a multiprocessor system.Comment: 14 Pages, Extended version for ADBIS 201

    Quantized Conductance of One-Dimensional Doped Mott Insulator

    Full text link
    The possible modification of quantized conductance of one-dimensional doped Mott insulator, where the Umklapp scattering plays an important role, is studied based on the method by Maslov-Stone and Ponomarenko. At T=0 and away from half-filling, the conductance is quantized as g=2e2/hg=2e^2/h and there is no renormalization by Umklapp scattering process. At finite temperatures, however, the quantization is affected depending on the gate voltage and temperature.Comment: 10 pages, 4 figures, uses jpsj.st

    Electronic states around a vortex core in high-Tc superconductors based on the t-J model

    Full text link
    Electronic states around vortex cores in high-Tc superconductors are studied using the two-dimensional t-J model in order to treat the d-wave superconductivity with short coherence length and the antiferromagnetic (AF) instability within the same framework. We focus on the disappearance of the large zero-energy peak in the local density of states observed in high-Tc superconductors. When the system is near the optimum doping, we find that the local AF correlation develops inside the vortex cores. However, the detailed doping dependence calculations confirm that the experimentally observed reduction of the zero-energy peak is more reasonably attributed to the smallness of the core size rather than to the AF correlation developed inside the core. The correlation between the spatial dependence of the core states and the core radius is discussed.Comment: 4 pages, 4 figure
    corecore