373 research outputs found
The HLA Class II Allele Allele DRB1*15 is over-represented in patients with Idiopathic Pulmonary Fibrosis
BACKGROUND:
Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. METHODS/PRINCIPAL FINDINGS:
HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DL(CO)) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). CONCLUSIONS/SIGNIFICANCE:
DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease
A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis
Background: The course of disease for patients with idiopathic pulmonary fibrosis (IPF) is highly heterogeneous. Prognostic models rely on demographic and clinical characteristics and are not reproducible. Integrating data from genomic analyses may identify novel prognostic models and provide mechanistic insights into IPF. Methods: Total RNA of peripheral blood mononuclear cells was subjected to microarray profiling in a training (45 IPF individuals) and two independent validation cohorts (21 IPF/10 controls, and 75 IPF individuals, respectively). To identify a gene set predictive of IPF prognosis, we incorporated genomic, clinical, and outcome data from the training cohort. Predictor genes were selected if all the following criteria were met: 1) Present in a gene co-expression module from Weighted Gene Co-expression Network Analysis (WGCNA) that correlated with pulmonary function (p 1.5 and false discovery rate (FDR) < 2 %; and 3) Predictive of mortality (p < 0.05) in univariate Cox regression analysis. "Survival risk group prediction" was adopted to construct a functional genomic model that used the IPF prognostic predictor gene set to derive a prognostic index (PI) for each patient into either high or low risk for survival outcomes. Prediction accuracy was assessed with a repeated 10-fold cross-validation algorithm and independently assessed in two validation cohorts through multivariate Cox regression survival analysis. Results: A set of 118 IPF prognostic predictor genes was used to derive the functional genomic model and PI. In the training cohort, high-risk IPF patients predicted by PI had significantly shorter survival compared to those labeled as low-risk patients (log rank p < 0.001). The prediction accuracy was further validated in two independent cohorts (log rank p < 0.001 and 0.002). Functional pathway analysis revealed that the canonical pathways enriched with the IPF prognostic predictor gene set were involved in T-cell biology, including iCOS, T-cell receptor, and CD28 signaling. Conclusions: Using supervised and unsupervised analyses, we identified a set of IPF prognostic predictor genes and derived a functional genomic model that predicted high and low-risk IPF patients with high accuracy. This genomic model may complement current prognostic tools to deliver more personalized care for IPF patients
Forced vital capacity trajectories in patients with idiopathic pulmonary fibrosis: a secondary analysis of a multicentre, prospective, observational cohort
BACKGROUND: Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with a variable clinical trajectory. Decline in forced vital capacity (FVC) is the main indicator of progression; however, missingness prevents long-term analysis of patterns in lung function. We aimed to identify distinct clusters of lung function trajectory among patients with idiopathic pulmonary fibrosis using machine learning techniques. METHODS: We did a secondary analysis of longitudinal data on FVC collected from a cohort of patients with idiopathic pulmonary fibrosis from the PROFILE study; a multicentre, prospective, observational cohort study. We evaluated the imputation performance of conventional and machine learning techniques to impute missing data and then analysed the fully imputed dataset by unsupervised clustering using self-organising maps. We compared anthropometric features, genomic associations, serum biomarkers, and clinical outcomes between clusters. We also performed a replication of the analysis on data from a cohort of patients with idiopathic pulmonary fibrosis from an independent dataset, obtained from the Chicago Consortium. FINDINGS: 415 (71%) of 581 participants recruited into the PROFILE study were eligible for further analysis. An unsupervised machine learning algorithm had the lowest imputation error among tested methods, and self-organising maps identified four distinct clusters (1-4), which was confirmed by sensitivity analysis. Cluster 1 comprised 140 (34%) participants and was associated with a disease trajectory showing a linear decline in FVC over 3 years. Cluster 2 comprised 100 (24%) participants and was associated with a trajectory showing an initial improvement in FVC before subsequently decreasing. Cluster 3 comprised 113 (27%) participants and was associated with a trajectory showing an initial decline in FVC before subsequent stabilisation. Cluster 4 comprised 62 (15%) participants and was associated with a trajectory showing stable lung function. Median survival was shortest in cluster 1 (2·87 years [IQR 2·29-3·40]) and cluster 3 (2·23 years [1·75-3·84]), followed by cluster 2 (4·74 years [3·96-5·73]), and was longest in cluster 4 (5·56 years [5·18-6·62]). Baseline FEV1 to FVC ratio and concentrations of the biomarker SP-D were significantly higher in clusters 1 and 3. Similar lung function clusters with some shared anthropometric features were identified in the replication cohort. INTERPRETATION: Using a data-driven unsupervised approach, we identified four clusters of lung function trajectory with distinct clinical and biochemical features. Enriching or stratifying longitudinal spirometric data into clusters might optimise evaluation of intervention efficacy during clinical trials and patient management. FUNDING: National Institute for Health and Care Research, Medical Research Council, and GlaxoSmithKline
Cardiovascular safety of nintedanib in subgroups by cardiovascular risk at baseline in the TOMORROW and INPULSIS trials
Nintedanib is a tyrosine kinase inhibitor used to treat idiopathic pulmonary fibrosis (IPF). We investigated the cardiovascular safety of nintedanib using pooled data from the TOMORROW and INPULSIS trials.Cardiovascular events were assessed post hoc in patients with a history of atherosclerotic cardiovascular disease (CVD) and/or one or more cardiovascular risk factors at baseline ("higher cardiovascular risk") and patients with no history of atherosclerotic CVD and no cardiovascular risk factors at baseline ("lower cardiovascular risk").Incidence rates were calculated for 1231 patients (n=723 nintedanib and n=508 placebo), of whom 89.9% had higher cardiovascular risk. Incidence rates of major adverse cardiovascular events were similar in the nintedanib and placebo groups in patients with higher cardiovascular risk (3.88 (95% CI 2.58-5.84) and 3.49 (95% CI 2.10-5.79) per 100 patient-years, respectively) and lower cardiovascular risk (4.78 (95% CI 1.54-14.82) and 5.37 (95% CI 1.73-16.65) per 100 patient-years, respectively). Incidence rates of myocardial infarction in the nintedanib and placebo groups, respectively, were 3.03 (95% CI 1.91-4.81) and 1.16 (95% CI 0.48-2.79) per 100 patient-years in patients with higher cardiovascular risk and 1.59 (95% CI 0.22-11.29) and 1.78 (95% CI 0.25-12.64) per 100 patient-years in patients with lower cardiovascular risk. Incidence rates of other ischaemic heart disease in the nintedanib and placebo groups, respectively, were 1.85 (95% CI 1.02-3.34) and 3.28 (95% CI 1.94-5.54) per 100 patient-years in patients with higher cardiovascular risk and 0 and 1.80 (95% CI 0.25-12.78) per 100 patient-years in patients with lower cardiovascular risk.These data help to establish the cardiovascular safety profile of nintedanib in IPF
The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease
Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients
Purpose: Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Methods: Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent 18F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of 18F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). Results: The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p < 0.001). The TF-corrected mean SUV in the controls was 2.24 ± 0.29 and 3.24 ± 0.84 in IPF patients (p < 0.001). Conclusion: IPF patients have increased pulmonary uptake of 18F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. © 2013 The Author(s)
Longitudinal lung function and gas transfer in individuals with idiopathic pulmonary fibrosis: a genome-wide association study
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an incurable lung disease characterised by progressive scarring leading to alveolar stiffness, reduced lung capacity, and impeded gas transfer. We aimed to identify genetic variants associated with declining lung capacity or declining gas transfer after diagnosis of IPF. METHODS: We did a genome-wide meta-analysis of longitudinal measures of forced vital capacity (FVC) and diffusing capacity of the lung for carbon monoxide (DLCO) in individuals diagnosed with IPF. Individuals were recruited to three studies between June, 1996, and August, 2017, from across centres in the US, UK, and Spain. Suggestively significant variants were investigated further in an additional independent study (CleanUP-IPF). All four studies diagnosed cases following American Thoracic Society/European Respiratory Society guidelines. Variants were defined as significantly associated if they had a meta-analysis p<5 × 10-8 when meta-analysing across all discovery and follow-up studies, had consistent direction of effects across all four studies, and were nominally significant (p<0·05) in each study. FINDINGS: 1329 individuals with a total of 5216 measures were included in the FVC analysis. 975 individuals with a total of 3361 measures were included in the DLCO analysis. For the discovery genome-wide analyses, 7 611 174 genetic variants were included in the FVC analysis and 7 536 843 in the DLCO analysis. One variant (rs115982800) located in an antisense RNA gene for protein kinase N2 (PKN2) showed a genome-wide significant association with FVC decline (-140 mL/year per risk allele [95% CI -180 to -100]; p=9·14 × 10-12). INTERPRETATION: Our analysis identifies a genetic variant associated with disease progression, which might highlight a new biological mechanism for IPF. We found that PKN2, a Rho and Rac effector protein, is the most likely gene of interest from this analysis. PKN2 inhibitors are currently in development and signify a potential novel therapeutic approach for IPF. FUNDING: Action for Pulmonary Fibrosis, Medical Research Council, Wellcome Trust, and National Institutes of Health National Heart, Lung, and Blood Institute
Разработка интегрированной системы менеджмента качества предприятия на основе процессной модели
Работа посвящена обзору теоретических аспектов интегрированной системы менеджмента качества и актуальности ее внедрения на предприятии. Проведенное исследование позволяет утверждать, что повышение эффективности бизнеса зависит от улучшения внутренних процессов организации, для этого предприятиями используются международные стандарты на системы менеджмента качества, экологического менеджмента, управления охраной труда, энергетического менеджмента, информационной безопасности, социальной ответственности и т.д. Внедрение данных стандартов обособленно не является эффективным инструментом, более правильным решением является интегрированная система менеджмента, включающая в себя несколько систем менеджмента.The article is devoted to the review of theoretical aspects of the integrated quality management system and the relevance of its implementation in the enterprise. The conducted research allows to assert, that increase of efficiency of business depends on improvement of internal processes of the organization, for this purpose enterprises use international standards for quality management systems, environmental management, labor protection management, energy management, information security, social responsibility, etc. The introduction of these standards is not an independent instrument alone, the more correct solution is an integrated management system that includes several management systems
Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants
[FeFe] Hydrogenases catalyze the reversible conversion of H2 into electrons and protons. Their catalytic site, the H-cluster, contains a generic [4Fe–4S]H cluster coupled to a [2Fe]H subsite [Fe2(ADT)(CO)3(CN)2]2−, ADT = µ(SCH2)2NH. Heterologously expressed [FeFe] hydrogenases (apo-hydrogenase) lack the [2Fe]H unit, but this can be incorporated through artificial maturation with a synthetic precursor [Fe2(ADT)(CO)4(CN)2]2−. Maturation with a [2Fe] complex in which the essential ADT amine moiety has been replaced by CH2 (PDT = propane-dithiolate) results in a low activity enzyme with structural and spectroscopic properties similar to those of the native enzyme, but with simplified redox behavior. Here, we study the effect of sulfur-to-selenium (S-to-Se) substitution in the bridging PDT ligand incorporated in the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii using magnetic resonance (EPR, NMR), FTIR and spectroelectrochemistry. The resulting HydA1-PDSe enzyme shows the same redox behavior as the parent HydA1-PDT. In addition, a state is observed in which extraneous CO is bound to the open coordination site of the [2Fe]H unit. This state was previously observed only in the native enzyme HydA1-ADT and not in HydA1-PDT. The spectroscopic features and redox behavior of HydA1-PDSe, resulting from maturation with [Fe2(PDSe)(CO)4(CN)2]2−, are discussed in terms of spin and charge density shifts and provide interesting insight into the electronic structure of the H-cluster. We also studied the effect of S-to-Se substitution in the [4Fe–4S] subcluster. The reduced form of HydA1 containing only the [4Fe–4Se]H cluster shows a characteristic S = 7/2 spin state which converts back into the S = 1/2 spin state upon maturation with a [2Fe]–PDT/ADT complex
Detection and Early Referral of Patients With Interstitial Lung Abnormalities: An Expert Survey Initiative
Background: Interstitial lung abnormalities (ILA) may represent undiagnosed early-stage or subclinical interstitial lung disease (ILD). ILA are often observed incidentally in patients who subsequently develop clinically overt ILD. There is limited information on consensus definitions for, and the appropriate evaluation of, ILA. Early recognition of patients with ILD remains challenging, yet critically important. Expert consensus could inform early recognition and referral. Research Question: Can consensus-based expert recommendations be identified to guide clinicians in the recognition, referral, and follow-up of patients with or at risk of developing early ILDs? Study Design and Methods: Pulmonologists and radiologists with expertise in ILD participated in two iterative rounds of surveys. The surveys aimed to establish consensus regarding ILA reporting, identification of patients with ILA, and identification of populations that might benefit from screening for ILD. Recommended referral criteria and follow-up processes were also addressed. Threshold for consensus was defined a priori as ≥ 75% agreement or disagreement. Results: Fifty-five experts were invited and 44 participated; consensus was reached on 39 of 85 questions. The following clinically important statements achieved consensus: honeycombing and traction bronchiectasis or bronchiolectasis indicate potentially progressive ILD; honeycombing detected during lung cancer screening should be reported as potentially significant (eg, with the Lung CT Screening Reporting and Data System “S-modifier” [Lung-RADS; which indicates clinically significant or potentially significant noncancer findings]), recommending referral to a pulmonologist in the radiology report; high-resolution CT imaging and full pulmonary function tests should be ordered if nondependent subpleural reticulation, traction bronchiectasis, honeycombing, centrilobular ground-glass nodules, or patchy ground-glass opacity are observed on CT imaging; patients with honeycombing or traction bronchiectasis should be referred to a pulmonologist irrespective of diffusion capacity values; and patients with systemic sclerosis should be screened with pulmonary function tests for early-stage ILD. Interpretation: Guidance was established for identifying clinically relevant ILA, subsequent referral, and follow-up. These results lay the foundation for developing practical guidance on managing patients with ILA
- …