1,136 research outputs found

    Repeat pregnancy among urban adolescents: sociodemographic, family, and health factors

    Get PDF
    First-time adolescent mothers are at high risk for a repeat pregnancy. The present investigation, part of an ongoing longitudinal study, examined sociodemographic, family, and health factors associated with repeat Pregnancy in a clinic sample of urban, first-time adolescent mothers (ages 13 to 17 years). They were predominantly African-American and from low-income households. Repeat pregnancy within one year and between one and two years postpartum was determined from medical records. Summary statistics, point biserial correlations, and chi-square statistics were used to analyze the data. Results indicated that postpartum contraceptive method was associated with repeat pregnancy at Year 1; contraceptive use, maternal age, history of miscarriages, and postpartum contraceptive method were associated with repeat pregnancy at Year 2. It was concluded that efforts to prevent repeat pregnancies among first-time adolescent mothers should include the continuous monitoring of contraceptive use, as well as the promotion of long-acting contraceptives (e.g., medroxyprogesterone or progesterone implants). Further, counseling should be offered to adolescent mothers with a history offered miscarriages

    Investigating the effect of precession on searches for neutron-star-black-hole binaries with Advanced LIGO

    No full text
    The first direct detection of neutron-star-black-hole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-black-hole mergers at a maximum distance of 900Mpc. To acheive this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The angular momentum of the black hole is expected to be comparable to the orbital angular momentum. This angular momentum will affect the dynamics of the inspiralling system and alter the phase evolution of the emitted gravitational-wave signal. In addition, if the black hole's angular momentum is not aligned with the orbital angular momentum it will cause the orbital plane of the system to precess. In this work we demonstrate that if the effect of the black hole's angular momentum is neglected in the waveform models used in gravitational-wave searches, the detection rate of (10+1.4)M⊙(10+1.4)M_{\odot} neutron-star--black-hole systems would be reduced by 33−3733 - 37%. The error in this measurement is due to uncertainty in the Post-Newtonian approximations that are used to model the gravitational-wave signal of neutron-star-black-hole inspiralling binaries. We describe a new method for creating a bank of filter waveforms where the black hole has non-zero angular momentum, but is aligned with the orbital angular momentum. With this bank we find that the detection rate of (10+1.4)M⊙(10+1.4)M_{\odot} neutron-star-black-hole systems would be reduced by 26−3326-33%. Systems that will not be detected are ones where the precession of the orbital plane causes the gravitational-wave signal to match poorly with non-precessing filter waveforms. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star-black-hole binaries

    Extending the PyCBC search for gravitational waves from compact binary mergers to a global network

    Get PDF
    The worldwide advanced gravitational-wave (GW) detector network has so far primarily consisted of the two Advanced LIGO observatories at Hanford and Livingston, with Advanced Virgo joining the 2016-7 O2 observation run at a relatively late stage. However Virgo has been observing alongside the LIGO detectors since the start of the O3 run; in the near future, the KAGRA detector will join the global network and a further LIGO detector in India is under construction. Gravitational-wave search methods would therefore benefit from the ability to analyse data from an arbitrary network of detectors. In this paper we extend the PyCBC offline compact binary coalescence (CBC) search analysis to three or more detectors, and describe resulting updates to the coincident search and event ranking statistic. For a three-detector network, our improved multi-detector search finds 20% more simulated signals at fixed false alarm rate in idealized colored Gaussian noise, and up to 40% more in real data, compared to the two-detector analysis previously used during O2

    A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory

    Get PDF
    ©2020. The Authors. Elves are a class of transient luminous events, with a radial extent typically greater than 250 km, that occur in the lower ionosphere above strong electrical storms. We report the observation of 1,598 elves, from 2014 to 2016, recorded with unprecedented time resolution (100 ns) using the fluorescence detector (FD) of the Pierre Auger Cosmic-Ray Observatory. The Auger Observatory is located in the Mendoza province of Argentina with a viewing footprint for elve observations of 3.106 km2, reaching areas above the Pacific and Atlantic Oceans, as well as the Córdoba region, which is known for severe convective thunderstorms. Primarily designed for ultrahigh energy cosmic-ray observations, the Auger FD turns out to be very sensitive to the ultraviolet emission in elves. The detector features modified Schmidt optics with large apertures resulting in a field of view that spans the horizon, and year-round operation on dark nights with low moonlight background, when the local weather is favorable. The measured light profiles of 18% of the elve events have more than one peak, compatible with intracloud activity. Within the 3-year sample, 72% of the elves correlate with the far-field radiation measurements of the World Wide Lightning Location Network. The Auger Observatory plans to continue operations until at least 2025, including elve observations and analysis. To the best of our knowledge, this observatory is the only facility on Earth that measures elves with year-round operation and full horizon coverage

    A Catalog of the Highest-energy Cosmic Rays Recorded during Phase I of Operation of the Pierre Auger Observatory

    Get PDF
    A catalog containing details of the highest-energy cosmic rays recorded through the detection of extensive air showers at the Pierre Auger Observatory is presented with the aim of opening the data to detailed examination. Descriptions of the 100 showers created by the highest-energy particles recorded between 2004 January 1 and 2020 December 31 are given for cosmic rays that have energies in the range 78-166 EeV. Details are also given on a further nine very energetic events that have been used in the calibration procedure adopted to determine the energy of each primary. A sky plot of the arrival directions of the most energetic particles is shown. No interpretations of the data are offered

    Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory

    Get PDF
    Lorentz invariance violation (LIV) is often described by dispersion relations of the form E i2 = m i2+p i2+δi,n E 2+n with delta different based on particle type i, with energy E, momentum p and rest mass m. Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the particles involved. Thus, the strongest constraints on the LIV coefficients δi,n tend to come from the highest energies. At sufficiently high energies, photons produced by cosmic ray interactions as they propagate through the Universe could be subluminal and unattenuated over cosmological distances. Cosmic ray interactions can also be modified and lead to detectable fingerprints in the energy spectrum and mass composition observed on Earth. The data collected at the Pierre Auger Observatory are therefore possibly sensitive to both the electromagnetic and hadronic sectors of LIV. In this article, we explore these two sectors by comparing the energy spectrum and the composition of cosmic rays and the upper limits on the photon flux from the Pierre Auger Observatory with simulations including LIV. Constraints on LIV parameters depend strongly on the mass composition of cosmic rays at the highest energies. For the electromagnetic sector, while no constraints can be obtained in the absence of protons beyond 1019 eV, we obtain δγ,0 \u3e -10-21, δγ,1 \u3e -10-40 eV-1 and δγ,2 \u3e -10-58 eV-2 in the case of a subdominant proton component up to 1020 eV. For the hadronic sector, we study the best description of the data as a function of LIV coefficients and we derive constraints in the hadronic sector such as δhad,0 \u3c 10-19, δhad,1 \u3c 10-38 eV-1 and δhad,2 \u3c 10-57 eV-2 at 5σ CL

    Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory

    Get PDF
    Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle θm between active and sterile neutrinos must satisfy, roughly, θm≲1.5×10-6(MX/109 GeV)-2 for a mass MX of the dark-matter particle between 108 GeV and 1011 GeV

    Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory

    Get PDF
    The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation. We find that a model containing a flux contribution from the starburst galaxy catalog of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of 10 EV provides a fair simultaneous description of all three observables. The starburst galaxy model is favored with a significance of 4.5σ (considering experimental systematic effects) compared to a reference model with only homogeneously distributed background sources. By investigating a scenario with Centaurus A as a single source in combination with the homogeneous background, we confirm that this region of the sky provides the dominant contribution to the observed anisotropy signal. Models containing a catalog of jetted active galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they cannot adequately describe the measured arrival directions

    Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

    Get PDF
    We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop
    • …
    corecore