81 research outputs found

    Algebraic treatment of the confluent Natanzon potentials

    Full text link
    Using the so(2,1) Lie algebra and the Baker, Campbell and Hausdorff formulas, the Green's function for the class of the confluent Natanzon potentials is constructed straightforwardly. The bound-state energy spectrum is then determined. Eventually, the three-dimensional harmonic potential, the three-dimensional Coulomb potential and the Morse potential may all be considered as particular cases.Comment: 9 page

    Decoupling A and B model in open string theory -- Topological adventures in the world of tadpoles

    Get PDF
    In this paper we analyze the problem of tadpole cancellation in open topological strings. We prove that the inclusion of unorientable worldsheet diagrams guarantees a consistent decoupling of A and B model for open superstring amplitudes at all genera. This is proven by direct microscopic computation in Super Conformal Field Theory. For the B-model we explicitly calculate one loop amplitudes in terms of analytic Ray-Singer torsions of appropriate vector bundles and obtain that the decoupling corresponds to the cancellation of D-brane and orientifold charges. Local tadpole cancellation on the worldsheet then guarantees the decoupling at all loops. The holomorphic anomaly equations for open topological strings at one loop are also obtained and compared with the results of the Quillen formula

    Satellite potentials for hypergeometric Natanzon potentials

    Get PDF
    As a result of the so(2,1) of the hypergeometric Natanzon potential a set of potentials related to the given one is determined. The set arises as a result of the action of the so(2,1) generators.Comment: 9 page

    Connection Between Type A and E Factorizations and Construction of Satellite Algebras

    Full text link
    Recently, we introduced a new class of symmetry algebras, called satellite algebras, which connect with one another wavefunctions belonging to different potentials of a given family, and corresponding to different energy eigenvalues. Here the role of the factorization method in the construction of such algebras is investigated. A general procedure for determining an so(2,2) or so(2,1) satellite algebra for all the Hamiltonians that admit a type E factorization is proposed. Such a procedure is based on the known relationship between type A and E factorizations, combined with an algebraization similar to that used in the construction of potential algebras. It is illustrated with the examples of the generalized Morse potential, the Rosen-Morse potential, the Kepler problem in a space of constant negative curvature, and, in each case, the conserved quantity is identified. It should be stressed that the method proposed is fairly general since the other factorization types may be considered as limiting cases of type A or E factorizations.Comment: 20 pages, LaTeX, no figure, to be published in J. Phys.

    Integrability properties of Hurwitz partition functions. II. Multiplication of cut-and-join operators and WDVV equations

    Full text link
    Correlators in topological theories are given by the values of a linear form on the products of operators from a commutative associative algebra (CAA). As a corollary, partition functions of topological theory always satisfy the generalized WDVV equations. We consider the Hurwitz partition functions, associated in this way with the CAA of cut-and-join operators. The ordinary Hurwitz numbers for a given number of sheets in the covering provide trivial (sums of exponentials) solutions to the WDVV equations, with finite number of time-variables. The generalized Hurwitz numbers from arXiv:0904.4227 provide a non-trivial solution with infinite number of times. The simplest solution of this type is associated with a subring, generated by the dilatation operators tr X(d/dX).Comment: 24 page

    Topological Phenomena in the Real Periodic Sine-Gordon Theory

    Full text link
    The set of real finite-gap Sine-Gordon solutions corresponding to a fixed spectral curve consists of several connected components. A simple explicit description of these components obtained by the authors recently is used to study the consequences of this property. In particular this description allows to calculate the topological charge of solutions (the averaging of the xx-derivative of the potential) and to show that the averaging of other standard conservation laws is the same for all components.Comment: LaTeX, 18 pages, 3 figure

    Continuum effects for the mean-field and pairing properties of weakly bound nuclei

    Get PDF
    Continuum effects in the weakly bound nuclei close to the drip-line are investigated using the analytically soluble Poschl-Teller-Ginocchio potential. Pairing correlations are studied within the Hartree-Fock-Bogoliubov method. We show that both resonant and non-resonant continuum phase space is active in creating the pairing field. The influence of positive-energy phase space is quantified in terms of localizations of states within the nuclear volume.Comment: 27 RevTeX pages, 12 EPS figures included, submitted to Physical Review

    Is telemonitoring an option against shortage of physicians in rural regions? attitude towards telemedical devices in the North Rhine-Westphalian health survey, Germany

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>General practitioners (GP) in rural areas of Germany are struggling to find successors for their private practices. Telemonitoring at home offers an option to support remaining GPs and specialists in ambulatory care.</p> <p>Methods</p> <p>We assessed the knowledge and attitude towards telemedicine in the population of North Rhine-Westphalia (NRW), Germany, in a population-based telephone survey.</p> <p>Results</p> <p>Out of 2,006 participants, 734 (36.6%) reported an awareness of telemedical devices. Only 37 participants (1.8%) have experience in using them. The majority of participants were in favour of using them in case of illness (72.2%). However, this approval declined with age. These findings were similar in rural and urban areas. Participants who were in favour of telemedicine (n = 1,480) strongly agreed that they would have to see their doctor less often, and that the doctor would recognize earlier relevant changes in their vital status. Participants who disliked to be monitored by telemedical devices preferred to receive immediate feedback from their physician. Especially, the elderly fear the loss of personal contact with their physician. They need the direct patient-physician communication.</p> <p>Conclusions</p> <p>The fear of being left alone with the technique needs to be compensated for today's elderly patients to enhance acceptance of home telemonitoring as support for remaining doctors either in the rural areas or cities.</p

    Quantum Dynamical Algebra SU(1,1) in One-Dimensional Exactly Solvable Potentials

    Full text link
    We mainly explore the linear algebraic structure like SU(2) or SU(1,1) of the shift operators for some one-dimensional exactly solvable potentials in this paper. During such process, a set of method based on original diagonalizing technique is presented to construct those suitable operator elements, J0, J_\pm that satisfy SU(2) or SU(1,1) algebra. At last, the similarity between radial problem and one-dimensional potentials encourages us to deal with the radial problem in the same way.Comment: No figures, 9 Pages accepted by International Journal of Theoretical Physic

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF
    The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.We acknowledge funding by the Spanish MEC (Grant No. FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (Grant No. IT-319-07), and the European Community through e-I3 ETSF project (Grant Agreement No. 211956).Peer reviewe
    corecore