Abstract

Correlators in topological theories are given by the values of a linear form on the products of operators from a commutative associative algebra (CAA). As a corollary, partition functions of topological theory always satisfy the generalized WDVV equations. We consider the Hurwitz partition functions, associated in this way with the CAA of cut-and-join operators. The ordinary Hurwitz numbers for a given number of sheets in the covering provide trivial (sums of exponentials) solutions to the WDVV equations, with finite number of time-variables. The generalized Hurwitz numbers from arXiv:0904.4227 provide a non-trivial solution with infinite number of times. The simplest solution of this type is associated with a subring, generated by the dilatation operators tr X(d/dX).Comment: 24 page

    Similar works

    Full text

    thumbnail-image

    Available Versions