Correlators in topological theories are given by the values of a linear form
on the products of operators from a commutative associative algebra (CAA). As a
corollary, partition functions of topological theory always satisfy the
generalized WDVV equations. We consider the Hurwitz partition functions,
associated in this way with the CAA of cut-and-join operators. The ordinary
Hurwitz numbers for a given number of sheets in the covering provide trivial
(sums of exponentials) solutions to the WDVV equations, with finite number of
time-variables. The generalized Hurwitz numbers from arXiv:0904.4227 provide a
non-trivial solution with infinite number of times. The simplest solution of
this type is associated with a subring, generated by the dilatation operators
tr X(d/dX).Comment: 24 page