126 research outputs found

    Segmentation of Multi-Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of Interest

    Get PDF
    Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1], [2], [3]. In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of interests. Using the SVM, high-quality ROIs (as compared to an expert's manual delineation) were obtained for 2 types of images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis of MIMS images. This approach has been integrated into “Open MIMS,” an ImageJ-plugin for comprehensive analysis of MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php

    An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    Get PDF
    A novel and versatile “bottom-up� approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy

    IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An advantage of the Intensity Modulated Radiotherapy (IMRT) technique is the feasibility to deliver different therapeutic dose levels to PTVs in a single treatment session using the Simultaneous Integrated Boost (SIB) technique. The paper aims to describe an automated tool to calculate the dose to be delivered with the SIB-IMRT technique in different anatomical regions that have the same Biological Equivalent Dose (BED), i.e. IsoBED, compared to the standard fractionation.</p> <p>Methods</p> <p>Based on the Linear Quadratic Model (LQM), we developed software that allows treatment schedules, biologically equivalent to standard fractionations, to be calculated. The main radiobiological parameters from literature are included in a database inside the software, which can be updated according to the clinical experience of each Institute. In particular, the BED to each target volume will be computed based on the alpha/beta ratio, total dose and the dose per fraction (generally 2 Gy for a standard fractionation). Then, after selecting the reference target, i.e. the PTV that controls the fractionation, a new total dose and dose per fraction providing the same isoBED will be calculated for each target volume.</p> <p>Results</p> <p>The IsoBED Software developed allows: 1) the calculation of new IsoBED treatment schedules derived from standard prescriptions and based on LQM, 2) the conversion of the dose-volume histograms (DVHs) for each Target and OAR to a nominal standard dose at 2Gy per fraction in order to be shown together with the DV-constraints from literature, based on the LQM and radiobiological parameters, and 3) the calculation of Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) curve versus the prescribed dose to the reference target.</p

    A joint physics and radiobiology DREAM team vision - towards better response prediction models to advance radiotherapy

    Get PDF
    Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
    corecore