96 research outputs found

    Effects of ergo-nutritional strategies on recovery in combat sports disciplines

    Get PDF
    In order to improve the recovery process in combat sports disciplines, ergo-nutritional strategies could be an effective option in training and competition. Some of these ergo-nutritional aids could improve performance but literature references are scarce, with controversial results regarding actual recovery effects. This systematic review aimed to examine which ergo-nutritional methods are most effective for assisting in the recovery process in combat sports, and to determine the appropriate training stimuli. This systematic review was carried out following the Preferred Reporting Items for Systematic Review (PRISMA) guidelines. A computerized search was performed in PubMed, Web of Science, the Cochrane Collaboration Database, Evidence Database, Evidence Based Medicine Search review, National Guidelines, EM-BASE, Scopus and Google Scholar system (from 1995 to April 30, 2021). The PICOS model was used to define inclusion and exclusion criteria. Out of 123 studies initially found, 18 met the eligibility criteria and were included in the review. Data from 367 athletes from different disciplines were examined. The evidence was grouped in 4 areas: oxidative stress, muscle and energy recovery, muscle repair, and metabolic acidosis. Evidence showed that vitamins, minerals, and some natural ergo-nutritional products are effective as antioxidants. Carbohydrates and protein determine the recovery effect. Sodium bicarbonate has a role as primary acidosis metabolic delayer. Accordingly, ergo-nutritional aids can help in the recovery process. Considering the effects outlined in the literature, more studies are needed to provide firm evidence. Para mejorar el proceso de recuperación en las disciplinas deportivas de combate, las estrategias ergo-nutricionales son una opción eficaz en el entrenamiento y la competición. Algunas de estas alternativas mejoran el rendimiento, pero actualmente existe una escasa bibliografía con resultados controvertidos relacionados con el efecto de recuperación. Esta revisión sistemática tuvo como objetivo determinar qué estrategias ergo-nutricionales son más efectivas en los procesos de recuperación. Se llevó a cabo siguiendo las pautas Preferred Reporting Items for Systematic Review (PRISMA). Se realizó una búsqueda computarizada en PubMed, Web of Science, Cochrane Collaboration Database, Evidence Database, Evidence Based Medicine Search review, National Guidelines, EM-BASE, Scopus y el sistema Google Scholar (desde 1995 hasta el 30 de abril de 2021). Se utilizó el modelo PICOS para definir los criterios de inclusión y exclusión. De los 123 estudios encontrados inicialmente, 18 cumplieron los criterios de elegibilidad y fueron incluidos. Se examinaron datos de 367 atletas de diferentes disciplinas. La evidencia se agrupó en 4 áreas: estrés oxidativo, recuperación muscular y energética, reparación muscular y acidosis metabólica. La evidencia mostró que las vitaminas, los minerales y algunos productos ergo-nutricionales naturales son eficaces como antioxidantes, los hidratos de carbono y las proteínas determinan su efecto recuperador y el bicarbonato de sodio es el principal retardador metabólico de la acidosis. Se destaca la importancia de aceptar un plan ergo-nutricional para mejorar el proceso de recuperación. A pesar de ello, y teniendo en cuenta los efectos descritos en la literatura, se necesitan más estudios para reforzar la evidencia actual

    Effect of Iron Supplementation on the Modulation of Iron Metabolism, Muscle Damage Biomarkers and Cortisol in Professional Cyclists

    Get PDF
    Background: The intense efforts made during 3-week stage races may reduce iron metabolism and hematological parameters. These efforts may increase the levels of circulating muscle damage markers and some hormones. All of these physiological changes may have negative consequences not only for the performance of athletes but also for their health. The main aim of this study was to evaluate the effects of supplementation with 80 mg/day of iron on haematological parameters, serum cortisol and biochemical muscle indicators on elite male cyclists during the 3-week stage race the Vuelta a España. Our secondary aim was to examine whether the hematological profile is associated with muscular damage parameters and cortisol. Methods: Eighteen elite male cyclists from two teams were randomly assigned to one of two groups: (1) control group (CG, n = 9; age: 26.1 ± 4.6 years; maximum oxygen uptake per kg: 78.0 ± 5.4 mL/kg/min) or (2) group treated with 80 mg/day iron (800 mg of iron protein succinylate, ITG, n = 9; age: 25.7 ± 6.4 years; maximum oxygen uptake per kg: 77.6 ± 6.5 mL/kg/min). The cyclists were subjected to blood tests one week before the start of the race (T1) and after 4 weeks of treatment, coinciding with the end of the competition (T2). Iron metabolism parameters, muscle damage indicators and serum cortisol were assessed. Repeated-measures ANOVA with group as a factor (GC and ITG) were used to examine the differences between groups throughout the study (time × group) after iron supplementation treatment. Results: Significant differences were observed between groups throughout the study in the group-by-time interaction and changes in serum iron (GC: -8.93 ± 10.35% vs. ITG: 0.60 ± 8.64%; p = 0.018), ferritin (GC: -13.88 ± 23.53% vs. ITG: 91.08 ± 118.30%; p = 0.004), haemoglobin (GC: 10.00 ± 3.32% vs. ITG: 13.04 ± 5.64%; p < 0.001), haematocrit (GC: -1.17 ± 3.78% vs. ITG: 7.32 ± 3.92%; p < 0.001) and cortisol (GC: 24.74 ± 25.84% vs. ITG: ⁻13.54 ± 13.61%; p = 0.005). However, no significant group-by-time interaction was observed for the circulating muscle biomarkers. Additionally, significant negative correlations of serum iron, haemoglobin and haematocrit with muscle circulating biomarkers and cortisol (p < 0.05) were observed. Conclusions: Oral iron supplementation with 80 mg/day iron (800 mg of iron protein succinylate) effectively prevented a decline in haematological parameters (serum iron, ferritin, haemoglobin and haematocrit) and maintained optimal levels of recovery in elite cyclists during the Vuelta a España. Moreover, the hematological values were shown to have relationship with muscular recovery parameters

    Early Cerebral Hemodynamic, Metabolic, and Histological Changes in Hypoxic–Ischemic Fetal Lambs during Postnatal Life

    Get PDF
    The hemodynamic, metabolic, and biochemical changes produced during the transition from fetal to neonatal life may be aggravated if an episode of asphyxia occurs during fetal life. The aim of the study was to examine regional cerebral blood flow (RCBF), histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress in the first hours of postnatal life following severe fetal asphyxia. Eighteen chronically instrumented newborn lambs were randomly assigned to either a control group or the hypoxic–ischemic (HI) group, in which case fetal asphyxia was induced just before delivery. All the animals were maintained on intermittent positive pressure ventilation for 3 h after delivery. During the HI insult, the injured group developed acidosis, hypoxia, hypercapnia, lactic acidosis, and tachycardia (relative to the control group), without hypotension. The intermittent positive pressure ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilatory support, there continued to be an increased RCBF in inner regions among the HI group, but no significant differences were detected in cortical flow compared to the control group. Also, the magnitude of the increase in TUNEL positive cells (apoptosis) and antioxidant enzymes, and decrease of ATP reserves was significantly greater in the brain regions where the RCBF was not higher. In conclusion, our findings identify early metabolic, histological, and hemodynamic changes involved in brain damage in premature asphyxiated lambs. Such changes have been described in human neonates, so our model could be useful to test the safety and the effectiveness of different neuroprotective or ventilation strategies applied in the first hours after fetal HI injury

    The role of selenium mineral trace element in exercise: antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review

    Get PDF
    Exercise overproduces oxygen reactive species (ROS) and eventually exceeds the body’s antioxidant capacity to neutralize them. The ROS produce damaging effects on the cell membrane and contribute to skeletal muscle damage. Selenium (Se), a natural mineral trace element, is an essential component of selenoproteins that plays an important role in antioxidant defense. The activity of the enzyme glutathione peroxidase (GPx), a highly-efficient antioxidant enzyme, is closely dependent on the presence of Se. These properties of Se may be potentially applicable to improve athletic performance and training recovery. We systematically searched for published studies to evaluate the effectiveness of Se supplementation on antioxidant defense system, muscle performance, hormone response, and athletic performance among physically active individuals. We used the Preferred Reporting Elements for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and searched in SCOPUS, Web of Science (WOS), and PubMed databases to identify published studies until March 2020. The systematic review incorporated original studies with randomized controlled crossover or parallel design in which intake of Se administered once a day was compared with the same placebo conditions. No exclusions were applied for the type of physical exercise performed, the sex, nor the age of the participants. Among 150 articles identified in the search, 6 met the criteria and were included in the systematic review. The methodological quality of the studies was evaluated using the McMaster Critical Review Form. Oral Se supplementation with 180 µg/day or 240 µg/day (selenomethionine) and 200 µg/day (Sodium Selenite), significantly decreased lipid hydroperoxide levels and increased GPx in plasma, erythrocyte, and muscle. No significant effects were observed on athletic performance, testosterone hormone levels, creatine kinase activity, and exercise training-induced adaptations on oxidative enzyme activities or on muscle fiber type myosin heavy chain expression. In addition, Se supplementation showed to have a dampening effect on the mitochondria changes in chronic and acute exercise. In summary, the use of Se supplementation has no benefits on aerobic or anaerobic athletic performance but it may prevent Se deficiencies among athletes with high-intensity and high-volume training. Optimal Se plasma levels may be important to minimize chronic exercise-induced oxidative effects and modulate the exercise effect on mitochondrial changes

    Electromyography: a simple and accessible tool to assess physical performance and health during hypoxia training. A systematic review

    Get PDF
    Hypoxia causes reduced partial pressure of oxygen in arterial blood and induces adaptations in skeletal muscle that may affect individuals’ physical performance and muscular health. These muscular changes are detectable and quantifiable by electromyography (EMG), an instrument that assesses electrical activity during active contraction at rest. EMG is a relatively simple and accessible technique for all patients, one that can show the degree of the sensory and motor functions because it provides information about the status of the peripheral nerves and muscles. The main goal of this review is to evaluate the scientific evidence of EMG as an instrument for monitoring different responses of skeletal muscles subjected to external stimuli such as hypoxia and physical activity. A structured search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines in Medline/PubMed, Scielo, Google Scholar, Web of Science, and Cochrane Library Plus. The search included articles published in the last 25 years until May 2020 and was restricted to English- and Spanish-language publications. As such, investigators identified nine articles that met the search criteria. The results determined that EMG was able to detect muscle fatigue from changes in the frequency spectrum. When a muscle was fatigued, high frequency components decreased and low frequency components increased. In other studies, EMG determined muscle activation increased during exercise by recruiting motor units and by increasing the intensity of muscle contractions. Finally, it was also possible to calculate the mean quadriceps quadratic activity used to obtain an image of muscle activation. In conclusion, EMG offers a suitable tool for monitoring the different skeletal muscle responses and has sufficient sensitivity to detect hypoxia-induced muscle changes produced by hypoxic stimuli. Moreover, EMG enhances an extension of physical examination and tests motor-system integrity

    Adherence to treatment and related factors among patients with chronic conditions in primary care: a cross-sectional study

    Get PDF
    Background: Adherence to treatment, a public health issue, is of particular importance in chronic disease therapies. Primary care practices offer ideal venues for the effective care and management of these conditions. The aim of this study is to assess adherence to treatment and related-factors among patients with chronic conditions in primary care settings. Methods: A cross-sectional study was conducted among 299 adult patients with ≥1 chronic condition(s) and prescribed medication in primary healthcare centers of Spain. The Morisky-Green-Levine questionnaire was used to assess medication adherence via face-to-face interviews. Crude and adjusted multivariable logistic regression models were used to analyze factors associated with adherence using the Multidimensional Model proposed by the World Health Organization — social and economic, healthcare team and system-related, condition-related, therapy-related, and patient-related factors. Results: The proportion of adherent patients to treatment was 55.5%. Older age (adjusted odds ratio 1.31 per 10- year increment, 95% CI 1.01–1.70), lower number of pharmacies used for medication refills (0.65, 95% CI 0.47– 0.90), having received complete treatment information (3.89, 95% CI 2.09–7.21), having adequate knowledge about medication regimen (4.17, 95% CI 2.23–7.80), and self-perception of a good quality of life (2.17, 95% CI 1.18–4.02) were independent factors associated with adherence. Conclusions: Adherence to treatment for chronic conditions remained low in primary care. Optimal achievement of appropriate levels of adherence through tailored multifaceted interventions will require attention to the multidimensional factors found in this study, particularly those related to patients’ education and their information needs

    The recovery umbrella in the world of elite sport: Do not forget the coaching and performance staff

    Get PDF
    In the field of sports science, the recovery umbrella is a trending topic, and even more so in the world of elite sports. This is evidenced by the significant increase in scientific publications during the last 10 years as teams look to find a competitive edge. Recovery is recognized to be an integral component to assist athlete preparation in the restoration of physical and psychological function, and subsequently, performance in elite team sports athletes. However, the importance of recovery in team staff members (sports coaches and performance staff) in elite sports appears to be a forgotten element. Given the unrelenting intense nature of daily tasks and responsibilities of team staff members, the elite sports environment can predispose coaches to increased susceptibility to psycho-socio physiological fatigue burden, and negatively affect health, wellbeing, and performance. Therefore, the aim of this opinion was to (1) develop an educational recovery resource for team staff members, (2) identify organizational task-specific fatigue indicators and barriers to recovery and self-care in team staff members, and (3) present recovery implementation strategies to assist team staff members in meeting their organizational functions. It is essential that we do not forget the coaching and performance staff in the recovery process. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore