18 research outputs found

    Abnormalities in autonomic function in obese boys at-risk for insulin resistance and obstructive sleep apnea.

    Get PDF
    Study objectivesCurrent evidence in adults suggests that, independent of obesity, obstructive sleep apnea (OSA) can lead to autonomic dysfunction and impaired glucose metabolism, but these relationships are less clear in children. The purpose of this study was to investigate the associations among OSA, glucose metabolism, and daytime autonomic function in obese pediatric subjects.MethodsTwenty-three obese boys participated in: overnight polysomnography; a frequently sampled intravenous glucose tolerance test; and recordings of spontaneous cardiorespiratory data in both the supine (baseline) and standing (sympathetic stimulus) postures.ResultsBaseline systolic blood pressure and reactivity of low-frequency heart rate variability to postural stress correlated with insulin resistance, increased fasting glucose, and reduced beta-cell function, but not OSA severity. Baroreflex sensitivity reactivity was reduced with sleep fragmentation, but only for subjects with low insulin sensitivity and/or low first-phase insulin response to glucose.ConclusionsThese findings suggest that vascular sympathetic activity impairment is more strongly affected by metabolic dysfunction than by OSA severity, while blunted vagal autonomic function associated with sleep fragmentation in OSA is enhanced when metabolic dysfunction is also present

    Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics

    Get PDF

    OMC: An Optical Monitoring Camera for INTEGRAL - Instrument description and performance

    Get PDF
    The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: ( 1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and ( 2) to provide the brightness and position of the optical counterpart of any gamma- or X-ray transient taking place within its field of view. The OMC is based on a refractive optics with an aperture of 50 mm focused onto a large format CCD (1024 x 2048 pixels) working in frame transfer mode (1024 x 1024 pixels imaging area). With a field of view of 5degrees x 5degrees it will be able to monitor sources down to magnitude V = 18. Typical observations will perform a sequence of different integration times, allowing for photometric uncertainties below 0.1 mag for objects with V less than or equal to 16

    Annexin A1 attenuates microvascular complications through restoration of Akt signalling in a murine model of type 1 diabetes

    Get PDF
    British Heart Foundation (Award number: FS/13/58/30648) to GP; the Ministry of Education, Brazil (Grant number: 7326/2014-09) to RAL; University of Turin (Ricerca Locale Linea B 2015 and Linea A 2016) to MC; the William Harvey Research Foundation to CT; Bart’s and The London Charity Centre of Diabetic Kidney Disease (programme grant:577/2348) to MY and CT; and FISM Fondazione Italiana Sclerosi Multipla–Cod. 2014/R/21 to ES
    corecore