790 research outputs found
Renormalization and Computation II: Time Cut-off and the Halting Problem
This is the second installment to the project initiated in [Ma3]. In the
first Part, I argued that both philosophy and technique of the perturbative
renormalization in quantum field theory could be meaningfully transplanted to
the theory of computation, and sketched several contexts supporting this view.
In this second part, I address some of the issues raised in [Ma3] and provide
their development in three contexts: a categorification of the algorithmic
computations; time cut--off and Anytime Algorithms; and finally, a Hopf algebra
renormalization of the Halting Problem.Comment: 28 page
Complexity vs Energy: Theory of Computation and Theoretical Physics
This paper is a survey dedicated to the analogy between the notions of {\it
complexity} in theoretical computer science and {\it energy} in physics. This
analogy is not metaphorical: I describe three precise mathematical contexts,
suggested recently, in which mathematics related to (un)computability is
inspired by and to a degree reproduces formalisms of statistical physics and
quantum field theory.Comment: 23 pages. Talk at the satellite conference to ECM 2012, "QQQ Algebra,
Geometry, Information", Tallinn, July 9-12, 201
F-manifolds with flat structure and Dubrovin's duality
This work continues the study of --manifolds , first defined by
Hertling and Manin and investigated in [He]. The notion of a compatible flat
structure is introduced, and it is shown that many constructions known
for Frobenius manifolds do not in fact require invariant metrics and can be
developed for all such triples In particular, we extend
and generalize recent Dubrovin's duality.Comment: 22 page
- …