868 research outputs found

    Persistent risk for new, subsequent new and recurrent hepatocellular carcinoma despite successful anti-hepatitis B virus therapy and tumor ablation: The need for hepatitis B virus cure.

    Get PDF
    Hepatitis B virus (HBV) is one of the most significant hepatocarcinogens. The ultimate goal of anti-HBV treatment is to prevent the development of hepatocellular carcinoma (HCC). During the last two decades, with the use of currently available anti-HBV therapies (lamivudine, entecavir and tenofovir disoproxil fumatate), there has been a decrease in the incidence of HBV-associated HCC (HBV-HCC). Furthermore, several studies have demonstrated a reduction in recurrent or new HCC development after initial HCC tumor ablation. However, during an observation period spanning 10 to 20 years, several case reports have demonstrated the development of new, subsequent new and recurrent HCC even in patients with undetectable serum HBV DNA. The persistent risk for HCC is attributed to the presence of covalently closed circular DNA (cccDNA) in the hepatocyte nucleus which continues to work as a template for HBV replication. While a functional cure (loss of hepatitis B surface antigen and undetectable viral DNA) can be attained with nucleos(t)ide analogues, these therapies do not eliminate cccDNA. Of utmost importance is successful eradication of the transcriptionally active HBV cccDNA from hepatocyte nuclei which would be considered a complete cure. The unpredictable nature of HCC development in patients with chronic HBV infection shows the need for a complete cure. Continued support and encouragement for research efforts aimed at developing curative therapies is imperative. The aims of this minireview are to highlight these observations and emphasize the need for a cure for HBV

    Biowaste and vegetable waste compost application to agriculture

    Get PDF
    The landfilling of biodegradable waste is proven to contribute to environmental degradation. Compost use in agriculture is increasing as both an alternative to landfilling for the management of biodegradable waste, as well as means of increasing or preserving soil organic matter. This research aimed to contribute to the identification of a system for managing the utilization of vegetable waste (agricultural plant-tissue waste) and biowaste (source-separated biodegradable municipal solid waste) composts for sustainable agriculture, with particular regards to nitrogen availability and leaching.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    AZD8055 enhances in vivo efficacy of afatinib in chordomas

    Get PDF
    Chordomas are primary bone tumors that arise in the cranial base, mobile spine, and sacrococcygeal region, affecting patients of all ages. Currently, there are no approved agents for chordoma patients. Here, we evaluated the anti-tumor efficacy of small molecule inhibitors that target oncogenic pathways in chordoma, as single agents and in combination, to identify novel therapeutic approaches with the greatest translational potential. A panel of small molecule compounds was screened in vivo against patient-derived xenograft (PDX) models of chordoma, and potentially synergistic combinations were further evaluated using chordoma cell lines and xenograft models. Among the tested agents, inhibitors of EGFR (BIBX 1382, erlotinib, and afatinib), c-MET (crizotinib), and mTOR (AZD8055) significantly inhibited tumor growth in vivo but did not induce tumor regression. Co-inhibition of EGFR and c-MET using erlotinib and crizotinib synergistically reduced cell viability in chordoma cell lines but did not result in enhanced in vivo activity. Co-inhibition of EGFR and mTOR pathways using afatinib and AZD8055 synergistically reduced cell viability in chordoma cell lines. Importantly, this dual inhibition completely suppressed tumor growth in vivo, showing improved tumor control. Together, these data demonstrate that individual inhibitors of EGFR, c-MET, and mTOR pathways suppress chordoma growth both in vitro and in vivo. mTOR inhibition increased the efficacy of EGFR inhibition on chordoma growth in several preclinical models. The insights gained from our study potentially provide a novel combination therapeutic strategy for patients with chordoma. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland

    Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia

    Get PDF
    Fragment-based drug discovery (FBDD) is well suited for discovering both drug leads and chemical probes of protein function; it can cover broad swaths of chemical space and allows the use of creative chemistry. FBDD is widely implemented for lead discovery in industry but is sometimes. used less systematically in academia. Design principles and implementation approaches for fragment libraries are continually evolving, and the lack of up-to-date guidance may prevent more effective application of FBDD in academia. This Perspective explores many of the theoretical, practical, and strategic considerations that occur within FBDD programs, including the optimal size, complexity, physicochemical profile, and shape profile of fragments in FBDD libraries, as well as compound storage, evaluation; and screening technologies. This:compilation of industry experience in FBDD will hopefully be useful for those pursuing FBDD in academia

    Computational modelling and experimental tank testing of the multi float WaveSub under regular wave forcing

    Get PDF
    A submerged wave device generates energy from the relative motion of floating bodies. In WaveSub, three floats are joined to a reactor; each connected to a spring and generator. Electricity generated damps the orbital movements of the floats. The forces are non-linear and each float interacts with the others. Tuning to the wave climate is achieved by changing the line lengths, so there is a need to understand the performance trade-offs for a large number of configurations. This requires an efficient, large displacement, multidirectional, multi-body numerical scheme. Results from a 1/25 scale wave basin experiment are described. Here, we show that a time domain linear potential flow formulation (Nemoh, WEC-Sim) can match the tank testing provided that suitably tuned drag coefficients are employed. Inviscid linear potential models can match some wave device experiments; however, additional viscous terms generally provide better accuracy. Scale experiments are also prone to mechanical friction, and we estimate friction terms to improve the correlation further. The resulting error in mean power between numerical and physical models is approximately 10%. Predicted device movement shows a good match. Overall, drag terms in time domain wave energy modelling will improve simulation accuracy in wave renewable energy device design

    FeS-Induced Radical Formation and Its Effect on Plasmid DNA

    Get PDF
    Plasmid DNA was incubated at 25°C with aqueous solutions of dissolved Fe(II), S(-II), and nanoparticulate FeS with a mackinawite structure, FeSm. At ≥0.1 mM total dissolved Fe(II) and S(-II), an increase in the proportion of the relaxed plasmid DNA occurs, through scission of the DNA backbone. In solutions where FeSm was precipitated, nanoparticulate FeSm binds to the DNA molecules. In solutions with concentrations below the FeSm solubility product, nicking of supercoiled pDNA occurs. Plasmid DNA appears to be a sensitive proxy for radical reactions. The reactant is proposed to be a sulfur-based radical produced from the iron-catalyzed decomposition of bisulfide, in a manner analogous to the Fenton reaction. This is further supported by experiments that suggest that sulfide free radicals are produced during the photolysis of aqueous solutions of polysulfides. Supercoiling of DNA affects nearly all DNA–protein transactions so the observation of relaxation of supercoiled forms through reaction with FeS solutions has direct implications to biochemistry. The results of this experimentation suggest that genotoxicity in FeS-rich systems is a further contributory factor to the limited survival of organisms in sulfidic environments. Mutations resulting from the interactions of organisms and mobile elements, such as plasmids, in sediments will also be affected in sulfide-rich environments
    • …
    corecore