15 research outputs found

    In Vivo Imaging of Transiently Transgenized Mice with a Bovine Interleukin 8 (CXCL8) Promoter/Luciferase Reporter Construct

    Get PDF
    One of the most remarkable properties of interleukin 8 (CXCL8/IL-8), a chemokine with known additional functions also in angiogenesis and tissue remodeling, is the variation of its expression levels. In healthy tissues, IL-8 is barely detectable, but it is rapidly induced by several folds in response to proinflammatory cytokines, bacterial or viral products, and cellular stress. Although mouse cells do not bear a clear homologous IL-8 gene, the murine transcriptional apparatus may well be capable of activating or repressing a heterologous IL-8 gene promoter driving a reporter gene. In order to induce a transient transgenic expression, mice were systemically injected with a bovine IL-8 promoter–luciferase construct. Subsequently mice were monitored for luciferase expression in the lung by in vivo bioluminescent image analysis over an extended period of time (up to 60 days). We demonstrate that the bovine IL-8 promoter–luciferase construct is transiently and robustly activated 3–5 hours after LPS and TNF-α instillation into the lung, peaking at 35 days after construct delivery. Bovine IL-8 promoter–luciferase activation correlates with white blood cell and neutrophil infiltration into the lung. This study demonstrates that a small experimental rodent model can be utilized for non-invasively monitoring, through a reporter gene system, the activation of an IL-8 promoter region derived from a larger size animal (bovine). This proof of principle study has the potential to be utilized also for studying primate IL-8 promoter regions

    LentivĂ­rus de pequenos ruminantes (CAEV e Maedi-Visna): revisĂŁo e perspectivas

    Full text link

    Suitability of PER.C6 (R) cells to generate epidemic and pandemic influenza vaccine strains by reverse genetics

    No full text
    Reverse genetics, the generation of influenza viruses from cDNA. presents a rapid method for creating vaccine strains. The technique necessitates the use of cultured cells. Due to technical and regulatory requirements, the choice of cell lines for production of human influenza vaccines is limited. PER.C6 (R) cells, among the most extensively characterized and documented cells, support growth of all influenza Viruses tested to date, and can be grown to high densities in large bioreactors in the absence of serum or micro carriers. Here, the suitability of these cells for the generation of influenza Viruses by reverse genetics was investigated. A range of viruses reflective of vaccine strains was rescued exclusively using PER.C6 cells by Various transfection methods, including an animal component-free procedure. Furthermore, a whole inactivated vaccine carrying the HA and NA segments of A/HK/156/97 (H5N1) that was both rescued from and propagated oil PER.C6 cells, conferred protection in a mouse model. Thus PER.C6 cells provide an attractive platform for generation of influenza vaccine strains via reverse genetics

    Expression of Chemokine Genes in Human Dermal Microvascular Endothelial Cell Lines Infected with Orientia tsutsugamushi

    No full text
    Scrub typhus, caused by Orientia tsutsugamushi, is characterized by local as well as systemic inflammatory manifestations. The main pathologic change is focal or disseminated multiorgan vasculitis, which is caused by the destruction of endothelial cells and perivascular infiltration of leukocytes. We investigated the regulation of chemokine induction in transformed human dermal microvascular endothelial cells (HMEC-1) in response to O. tsutsugamushi infection. The monocyte chemoattractant protein-1 (MCP-1) and interleukin 8 (IL-8) mRNAs were induced, and their levels showed a transitory peak at 3 and 6 h, respectively. The RANTES transcript was detected at 6 h after infection, with increased levels evident by 48 h. The induction of the MCP-1 and IL-8 genes was not blocked by cycloheximide, suggesting that de novo protein synthesis of host cell proteins is not required for their transcriptional activation. Heat- or UV-inactivated O. tsutsugamushi induced a similar extent of MCP-1 and IL-8 responses. The induction of MCP-1 and IL-8 transcripts in the endothelial cells by O. tsutsugamushi was not blocked by the inhibitors of NF-ÎşB. Furthermore, the activation of NF-ÎşB was not detected in HMEC-1 stimulated with O. tsutsugamushi. These results demonstrate that heat-stable molecules of O. tsutsugamushi induce the MCP-1 and IL-8 genes and the induction of the chemokine genes may be mediated by an NF-ÎşB independent mechanism. We also showed that another major transcription factor, activator protein-1 (AP-1), was up-regulated in HMEC-1 after O. tsutsugamushi infection. This suggests the possible involvement of AP-1 in the chemokine gene expression
    corecore