11 research outputs found

    GRAPEVINE VIRUS DISEASES:ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT

    Full text link

    Short communication. Molecular analysis of the genomic RNAs 1 and 2 of the first Arabis mosaic virus isolate detected in Spanish grapevines

    No full text
    The Arabis mosaic virus (ArMV) is one of the causative agent of the grapevine fanleaf disease, one of the most widespread and damaging viral diseases of grapevine. Recently, the ArMV has been detected in Spanish vineyards, and its determination and molecular characterization was undertaken. To this aim, the nucleotide sequence of the genomic RNAs 1 and 2 of the first isolate of ArMV infecting grapevine detected in Spain (ArMV-DU13) has been determined. The ArMV-DU13 genomic sequences were compared to the corresponding sequences of other isolates of ArMV, or nepoviruses. The most divergent genes among ArMV isolates were the X1 and VPg genes on the RNA 1, and the 2A gene on the RNA 2, with identity levels at the amino acid level of 78% (X1 and VPg) or 69% (2A) between the most distant isolates. Interestingly, the VPg genes were identical between the two grapevine isolates ArMV-Du13 and �NW, suggesting a possible implication of the host. The phylogenetic analysis of the RNA 2 showed that the Spanish isolate was close to Grapevine fanleaf virus isolates. The analysis of the full length RNA 2 suggests a recombination event between ArMV-DU13 and GFLV-GHu isolates between nucleotides 54 and 586 in the ArMVDU13 isolate. Altogether, these results confirm the high variability between isolates of ArMV, and will be helpful to design more appropriate and reliable molecular diagnostic techniques for the control of this emerging virus in Spain

    Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants

    No full text
    Abstract Background Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). Results Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airén, Cabernet Franc, Cabernet Sauvignon, Mencía, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valencí Blanc infected by GLRaV-3, GFkV and/or GFLV. Conclusions Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in some of the regenerated plants showed that both viruses are seed-transmitted. The regeneration of true-to-type virus-free plants from all infected varieties indicates that this methodology may represent an alternative procedure for virus cleaning in grapevine
    corecore