15 research outputs found

    Identification of the chromosome complement and the spontaneous 1R/1V translocations in allotetraploid Secale cereale × Dasypyrum villosum hybrids through cytogenetic approaches

    Get PDF
    Genome modifications that occur at the initial interspecific hybridization event are dynamic and can be consolidated during the process of stabilization in successive generations of allopolyploids. This study identifies the number and chromosomal location of ribosomal DNA (rDNA) sites between Secale cereale, Dasypyrum villosum, and their allotetraploid S. cereale × D. villosum hybrids. For the first time, we show the advantages of FISH to reveal chromosome rearrangements in the tetraploid Secale × Dasypyrum hybrids. Based on the specific hybridization patterns of ribosomal 5S, 35S DNA and rye species-specific pSc200 DNA probes, a set of genotypes with numerous Secale/Dasypyrum translocations of 1R/1V chromosomes were identified in successive generations of allotetraploid S. cereale × D. villosum hybrids. In addition we analyse rye chromosome pairs using FISH with chromosome-specific DNA sequences on S. cereale × D. villosum hybrids

    Progenitor-Derivative Relationships of Hordeum Polyploids (Poaceae, Triticeae) Inferred from Sequences of TOPO6, a Nuclear Low-Copy Gene Region

    Get PDF
    Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase

    BEHAVIOUR AND REASONING DESCRIPTION LANGUAGE (BRDL)

    No full text
    In this paper we present a basic language for describing human behaviour and reasoning and present the cognitive architecture underlying the semantics of the language. The language is illustrated through a number of examples showing its ability to model human reasoning, problem solving, deliberate behaviour and automatic behaviour. We expect that the simple notation and its intuitive semantics may address the needs of practitioners from non matematical backgrounds, in particular psychologists, linguists and other social scientists. The language usage is twofold, aiming at the formal modelling and analysis of interactive systems and the comparison and validation of alternative models of memory and cognition

    CHIAS-based positioning of recombination hotspots and Giemsa bands in a multireconstructed barley karyotype

    No full text
    Abstract The chromosome complement of reconstructed barley karyotype PK 88 was analyzed by computer-aided Chromosome Image Analysis System (CHIAS). Fine mapping of Giemsa N-bands and regions with increased meiotic recombination activity along each individual chromosome was achieved. It was also found that CHIAS-visualized condensation profiles can be utilized as a reliable criterion for subtle differentiation of hetero- and euchromatin domains within a defined chromosomal regions. Application of CHIAS on karyotypes with distinct chromosome morphology was found to be an appropriate and reliable tool for screening of changes in chromatin compactness and its functional characteristics

    Characterization of normal and “albino” phenotypes in Erythrina crista-galli

    No full text
    We present here a characterization of Erythrina crista-galli L. (syn: Erythrina lamifolia Jacq.) seedlings, obtained from a plant from the Botanical Garden of Pisa University. This plant produces seeds that, during germination, have shown two different seedling phenotypes: normal (NT, 75%) and "albino" types (AT, 25%). Albino seedlings survive only 8–9 weeks and their growth is dramatically reduced when compared with wild type seedlings. Biochemical investigations have shown that albino seedlings completely lack chlorophyll and carotenoids and also soluble sugar levels are lower than in the normal type. We have also conducted sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) experiments and silver staining analysis on different protein extracts from shoots and leaves of both phenotypes, and demonstrated strong differences in protein patterns. The almost total absence of putative small and large RuBisCo bands in albino seedlings should be emphasized. We have also microspectrophotometrica..
    corecore