7 research outputs found

    Identifying individual differences of fluoxetine response in juvenile rhesus monkeys by metabolite profiling

    Get PDF
    Fluoxetine is the only psychopharmacological agent approved for depression by the US Food and Drug Administration for children and is commonly used therapeutically in a variety of neurodevelopmental disorders. Therapeutic response shows high individual variability, and severe side effects have been observed. In the current study we set out to identify biomarkers of response to fluoxetine as well as biomarkers that correlate with impulsivity, a measure of reward delay behavior and potential side effect of the drug, in juvenile male rhesus monkeys. The study group was also genotyped for polymorphisms of monoamine oxidase A (MAOA), a gene that has been associated with psychiatric disorders. We used peripheral metabolite profiling of blood and cerebrospinal fluid (CSF) from animals treated daily with fluoxetine or vehicle for one year. Fluoxetine response metabolite profiles and metabolite/reward delay behavior associations were evaluated using multivariate analysis. Our analyses identified a set of plasma and CSF metabolites that distinguish fluoxetine-from vehicle-treated animals and metabolites that correlate with impulsivity. Some metabolites displayed an interaction between fluoxetine and MAOA genotype. The identified metabolite biomarkers belong to pathways that have important functions in central nervous system physiology. Biomarkers of response to fluoxetine in the normally functioning brain of juvenile nonhuman primates may aid in finding predictors of response to treatment in young psychiatric populations and in progress toward the realization of a precision medicine approach in the area of neurodevelopmental disorders

    Identification of Potential Vaccine and Drug Target Candidates by Expressed Sequence Tag Analysis and Immunoscreening of Onchocerca volvulus Larval cDNA Libraries

    Get PDF
    The search for appropriate vaccine candidates and drug targets against onchocerciasis has so far been confronted with several limitations due to the unavailability of biological material, appropriate molecular resources, and knowledge of the parasite biology. To identify targets for vaccine or chemotherapy development we have undertaken two approaches. First, cDNA expression libraries were constructed from life cycle stages that are critical for establishment of Onchocerca volvulus infection, the third-stage larvae (L3) and the molting L3. A gene discovery effort was then initiated by random expressed sequence tag analysis of 5,506 cDNA clones. Cluster analyses showed that many of the transcripts were up-regulated and/or stage specific in either one or both of the cDNA libraries when compared to the microfilariae, L2, and both adult stages of the parasite. Homology searches against the GenBank database facilitated the identification of several genes of interest, such as proteinases, proteinase inhibitors, antioxidant or detoxification enzymes, and neurotransmitter receptors, as well as structural and housekeeping genes. Other O. volvulus genes showed homology only to predicted genes from the free-living nematode Caenorhabditis elegans or were entirely novel. Some of the novel proteins contain potential secretory leaders. Secondly, by immunoscreening the molting L3 cDNA library with a pool of human sera from putatively immune individuals, we identified six novel immunogenic proteins that otherwise would not have been identified as potential vaccinogens using the gene discovery effort. This study lays a solid foundation for a better understanding of the biology of O. volvulus as well as for the identification of novel targets for filaricidal agents and/or vaccines against onchocerciasis based on immunological and rational hypothesis-driven research
    corecore