87 research outputs found

    Incorporation of Y2O3 Particles into 410L Stainless Steel by a Powder Metallurgy Route

    Get PDF
    Addition of yttria to steels has been proposed for the fabrication of oxide-dispersion-strengthened materials for nuclear power applications. We have investigated materials prepared from 12 Cr martensitic stainless steel, AISI 410L, produced by powder metallurgy. Materials were produced with and without yttria addition, and two different sizes of yttria were used, 0.9 µm and 50 nm. Tensile and mini-creep tests were performed to determine mechanical properties. Optical microscopy, SEM, TEM, and EDX analysis were used to investigate the microstructures and deformation mechanisms and to obtain information about non-metallic inclusion particles. SiO2, MnS, and Y2Si2O7 inclusion particles were observed. An SiO2 and Y2O3 interaction was seen to have occurred during the ball milling, which impaired the final mechanical properties. Small-angle neutron scattering experiments showed that the matrix chemistry prevented effective dissolution of the yttria. © The Author(s) 201

    A prolonged run-in period of standard subcutaneous microdialysis ameliorates quality of interstitial glucose signal in patients after major cardiac surgery

    Get PDF
    We evaluated a standard subcutaneous microdialysis technique for glucose monitoring in two critically ill patient populations and tested whether a prolonged run-in period improves the quality of the interstitial glucose signal. 20 surgical patients after major cardiac surgery (APACHE II score: 10.1 ± 3.2) and 10 medical patients with severe sepsis (APACHE II score: 31.1 ± 4.3) were included in this investigation. A microdialysis catheter was inserted in the subcutaneous adipose tissue of the abdominal region. Interstitial fluid and arterial blood were sampled in hourly intervals to analyse glucose concentrations. Subcutaneous adipose tissue glucose was prospectively calibrated to reference arterial blood either at hour 1 or at hour 6. Median absolute relative difference of glucose (MARD), calibrated at hour 6 (6.2 (2.6; 12.4) %) versus hour 1 (9.9 (4.2; 17.9) %) after catheter insertion indicated a significant improvement in signal quality in patients after major cardiac surgery (p < 0.001). Prolonged run-in period revealed no significant improvement in patients with severe sepsis, but the number of extreme deviations from the blood plasma values could be reduced. Improved concurrence of glucose readings via a 6-hour run-in period could only be achieved in patients after major cardiac surgery

    Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis _ state of the art

    Get PDF
    Fibrosis represents a major global disease burden, yet a potent antifibrotic compound is still not in sight. Part of the explanation for this situation is the difficulties that both academic laboratories and research and development departments in the pharmaceutical industry have been facing in re-enacting the fibrotic process in vitro for screening procedures prior to animal testing. Effective in vitro characterization of antifibrotic compounds has been hampered by cell culture settings that are lacking crucial cofactors or are not holistic representations of the biosynthetic and depositional pathway leading to the formation of an insoluble pericellular collagen matrix. In order to appreciate the task which in vitro screening of antifibrotics is up against, we will first review the fibrotic process by categorizing it into events that are upstream of collagen biosynthesis and the actual biosynthetic and depositional cascade of collagen I. We point out oversights such as the omission of vitamin C, a vital cofactor for the production of stable procollagen molecules, as well as the little known in vitro tardy procollagen processing by collagen C-proteinase/BMP-1, another reason for minimal collagen deposition in cell culture. We review current methods of cell culture and collagen quantitation vis-à-vis the high content options and requirements for normalization against cell number for meaningful data retrieval. Only when collagen has formed a fibrillar matrix that becomes cross-linked, invested with ligands, and can be remodelled and resorbed, the complete picture of fibrogenesis can be reflected in vitro. We show here how this can be achieved. A well thought-out in vitro fibrogenesis system represents the missing link between brute force chemical library screens and rational animal experimentation, thus providing both cost-effectiveness and streamlined procedures towards the development of better antifibrotic drugs
    corecore