1,135 research outputs found

    Signatures of X-ray reverberation in the power spectra of AGN

    Full text link
    We compute fully relativistic disc response functions in the case of the "lamp-post" geometry using the full observed reflection spectrum for various X-ray source heights, disc inclination, and spin values of the central black hole. Since the observed PSD is equal to the product of the intrinsic power spectrum with the "transfer function" (i.e. the Fourier transform of the disc response function), we are able to predict the observed PSDs in the case of X-ray illumination of the inner disc. The observed PSD should show a prominent dip at high frequencies and an oscillatory behaviour, with a decreasing amplitude, at higher frequencies. The reverberation "echo" features should be more prominent in energy bands where the reflection component is more pronounced. The frequency of the dip is independent of energy, and it is mainly determined by the black hole mass and the X-ray source height. The amplitude of the dip increases with increasing black hole spin and inclination angle, as long as the height of the "lamp" is smaller than ~10 gravitational radii. The detection of the X-ray reverberation signals in the PSDs can provide further evidence for X-ray illumination of the inner disc in AGN. Our results are largely independent of the assumed geometry of the disc-corona system, as long as it does not change with time, and the disc response function is characterized by a sharp rise, a "plateau", and a decline at longer times. Irrespective of the geometry, the frequency of the main dip should decrease with increasing "mean time" of the response function, and the amplitude of the dip should increase with increasing reflection fraction.Comment: Astronomy and Astrophysics accepte

    Electron relaxation in metals: Theory and exact analytical solutions

    Get PDF
    The non-equilibrium dynamics of electrons is of a great experimental and theoretical value providing important microscopic parameters of the Coulomb and electron-phonon interactions in metals and other cold plasmas. Because of the mathematical complexity of collision integrals theories of electron relaxation often rely on the assumption that electrons are in a "quasi-equilibrium" (QE) with a time-dependent temperature, or on the numerical integration of the time-dependent Boltzmann equation. We transform the integral Boltzmann equation to a partial differential Schroedinger-like equation with imaginary time in a one-dimensional "coordinate" space reciprocal to energy which allows for exact analytical solutions in both cases of electron-electron and electron-phonon relaxation. The exact relaxation rates are compared with the QE relaxation rates at high and low temperatures.Comment: Citation list has been extended. The paper is submitted to the Physical Review

    The financial instruments market – an institutional approach

    Get PDF
    In response to the last financial crisis new institutional reforms were implemented. The aim for these reforms is to save and secure the functioning of markets in financial instruments. It seems though that these efforts lack the clarity of the basic notion, which is the term “institution”. This weakness my cause interpretational problems on both theoretical and practical level. The aim of this article is to clarify the understanding of the notion of “institution” in finance. One of ways to achieve this goal is to present the institutional structure of the market in financial instruments, to specify the characteristics of both individual institutions and the whole environment in which they act. And, lastly, to outline an institutional transformation process which is driven by innovations. The classification of institutions is also proposed. As a result of analysis, following types of institutions are singled out: institutions in a broad meaning (established through institutional contracts), institutions in a narrow sense (norms and social rules). Additionally, the formal and informal institutions are distinguished

    Description of Pseudo-Newtonian Potential for the Relativistic Accretion Disk around Kerr Black Holes

    Full text link
    We present a pseudo-Newtonian potential for accretion disk modeling around the rotating black holes. This potential can describe the general relativistic effects on accretion disk. As the inclusion of rotation in a proper way is very important at an inner edge of disk the potential is derived from the Kerr metric. This potential can reproduce all the essential properties of general relativity within 10% error even for rapidly rotating black holes.Comment: 5 Latex pages including 1 figure. Version to appear in Astrophysical Journal, V-581, N-1, December 10, 200
    corecore