89 research outputs found

    What can a morphometric study of unoperated children teach us about the natural history of metopic synostosis?

    Get PDF
    Outcomes of surgical repair of trigonocephaly are well reported in the literature, but there is a paucity of information on the natural history of unoperated children. The authors evaluated a group of unoperated children with metopic synostosis to describe the natural change in head shape over time. A database was screened for scans of children with unoperated trigonocephaly (2010-2021). Multisuture cases and those with a metopic ridge were excluded. Three-dimensional surface scans (3D stereophotogrammetry/CT) were used for morphological analysis. Nine previously published parameters were used: frontal angle (FA30°), anteroposterior (AP) volume ratio (APVR), AP area ratio (APAR), AP width ratios 1 and 2 (APWR1 and APWR2), and 4 AP diagonal ratios (30° right APDR [rAPDR30], 30° left APDR [lAPDR30], 60° right APDR [rAPDR60], and 60° left APDR [lAPDR60]). Ninety-seven scans were identified from a cohort of 316 patients with a single metopic suture, in which the male-to-female ratio was 2.7:1. Ages at the time of the scan ranged from 9 days to 11 years and were stratified into 4 groups: group 1, 3 years. Significant improvements were detected in 5 parameters (APVR, APAR, APWR1, rAPDR30, and lAPDR30) over time, whereas no significant differences were found in FA30, APWR2, rAPDR60, and lAPDR60 between age groups. Forehead shape (surface area and volume), as well as narrowing and anterolateral contour at the frontal points, differed significantly over time without surgery. However, forehead angulation, narrowing, and anterolateral contour at temporal points did not show significant differences. This knowledge will aid in surgical and parental decision-making

    A Predictive Model for Steady State Ozone Concentration at an Urban-Coastal Site

    Get PDF
    Ground level ozone (O3) plays an important role in controlling the oxidation budget in the boundary layer and thus affects the environment and causes severe health disorders. Ozone gas, being one of the well-known greenhouse gases, although present in small quantities, contributes to global warming. In this study, we present a predictive model for the steady-state ozone concentrations during daytime (13:00–17:00) and nighttime (01:00–05:00) at an urban coastal site. The model is based on a modified approach of the null cycle of O3 and NOx and was evaluated against a one-year data-base of O3 and nitrogen oxides (NO and NO2) measured at an urban coastal site in Jeddah, on the west coast of Saudi Arabia. The model for daytime concentrations was found to be linearly dependent on the concentration ratio of NO2 to NO whereas that for the nighttime period was suggested to be inversely proportional to NO2 concentrations. Knowing that reactions involved in tropospheric O3 formation are very complex, this proposed model provides reasonable predictions for the daytime and nighttime concentrations. Since the current description of the model is solely based on the null cycle of O3 and NOx, other precursors could be considered in future development of this model. This study will serve as basis for future studies that might introduce informing strategies to control ground level O3 concentrations, as well as its precursors’ emissions

    A Predictive Model for Steady State Ozone Concentration at an Urban-Coastal Site

    Get PDF
    Ground level ozone (O3) plays an important role in controlling the oxidation budget in the boundary layer and thus affects the environment and causes severe health disorders. Ozone gas, being one of the well-known greenhouse gases, although present in small quantities, contributes to global warming. In this study, we present a predictive model for the steady-state ozone concentrations during daytime (13:00–17:00) and nighttime (01:00–05:00) at an urban coastal site. The model is based on a modified approach of the null cycle of O3 and NOx and was evaluated against a one-year data-base of O3 and nitrogen oxides (NO and NO2) measured at an urban coastal site in Jeddah, on the west coast of Saudi Arabia. The model for daytime concentrations was found to be linearly dependent on the concentration ratio of NO2 to NO whereas that for the nighttime period was suggested to be inversely proportional to NO2 concentrations. Knowing that reactions involved in tropospheric O3 formation are very complex, this proposed model provides reasonable predictions for the daytime and nighttime concentrations. Since the current description of the model is solely based on the null cycle of O3 and NOx, other precursors could be considered in future development of this model. This study will serve as basis for future studies that might introduce informing strategies to control ground level O3 concentrations, as well as its precursors’ emissions

    A Predictive Model for Steady State Ozone Concentration at an Urban-Coastal Site

    Get PDF
    Ground level ozone (O-3) plays an important role in controlling the oxidation budget in the boundary layer and thus affects the environment and causes severe health disorders. Ozone gas, being one of the well-known greenhouse gases, although present in small quantities, contributes to global warming. In this study, we present a predictive model for the steady-state ozone concentrations during daytime (13:00-17:00) and nighttime (01:00-05:00) at an urban coastal site. The model is based on a modified approach of the null cycle of O-3 and NOx and was evaluated against a one-year data-base of O-3 and nitrogen oxides (NO and NO2) measured at an urban coastal site in Jeddah, on the west coast of Saudi Arabia. The model for daytime concentrations was found to be linearly dependent on the concentration ratio of NO2 to NO whereas that for the nighttime period was suggested to be inversely proportional to NO2 concentrations. Knowing that reactions involved in tropospheric O-3 formation are very complex, this proposed model provides reasonable predictions for the daytime and nighttime concentrations. Since the current description of the model is solely based on the null cycle of O-3 and NOx, other precursors could be considered in future development of this model. This study will serve as basis for future studies that might introduce informing strategies to control ground level O-3 concentrations, as well as its precursors' emissions.Peer reviewe

    New particle formation, growth and apparent shrinkage at a rural background site in western Saudi Arabia

    Get PDF
    Atmospheric aerosols have significant effects on human health and the climate. A large fraction of these aerosols originates from secondary new particle formation (NPF), where atmospheric vapors form small particles that subsequently grow into larger sizes. In this study, we characterize NPF events observed at a rural background site of Hada Al Sham (21.802 degrees N, 39.729 degrees E), located in western Saudi Arabia, during the years 2013-2015. Our analysis shows that NPF events occur very frequently at the site, as 73 % of all the 454 classified days were NPF days. The high NPF frequency is likely explained by the typically prevailing conditions of clear skies and high solar radiation, in combination with sufficient amounts of precursor vapors for particle formation and growth. Several factors suggest that in Hada Al Sham these precursor vapors are related to the transport of anthropogenic emissions from the coastal urban and industrial areas. The median particle formation and growth rates for the NPF days were 8.7 cm(-3) s(-1) (J(7)(nm)) and 7.4 nm h(-1) (GR(7-12nm)), respectively, both showing highest values during late summer. Interestingly, the formation and growth rates increase as a function of the condensation sink, likely reflecting the common anthropogenic sources of NPF precursor vapors and primary particles affecting the condensation sink. A total of 76 % of the NPF days showed an unusual progression, where the observed diameter of the newly formed particle mode started to decrease after the growth phase. In comparison to most long-term measurements, the NPF events in Hada Al Sham are exceptionally frequent and strong both in terms of formation and growth rates. In addition, the frequency of the decreasing mode diameter events is higher than anywhere else in the world.Peer reviewe

    Rank Set Sampling in Improving the Estimates of Simple Regression Model

    No full text
    <p>In this paper Rank set sampling (RSS) is introduced with a view of increasing the efficiency of estimates of Simple regression model. Regression model is considered with respect to samples taken from sampling techniques like Simple random sampling (SRS), Systematic sampling (SYS) and Rank set sampling (RSS). It is found that R<sup>2</sup> and Adj R<sup>2 </sup>obtained from regression model based on Rank set sample is higher than rest of two sampling schemes. Similarly Root mean square error, p-values, coefficient of variation are much lower in Rank set based regression model, also under validation technique (Jackknifing) there is consistency in the measure of R<sup>2</sup>, Adj R<sup>2</sup> and RMSE in case of RSS as compared to SRS and SYS. Results are supported with an empirical study involving a real data set generated of <em>Pinus Wallichiana</em> taken from block Langate of district Kupwara. </p

    Aerosol optical properties at rural background area in Western Saudi Arabia

    Get PDF
    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Angstrom exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 +/- 71 Min(-1) (mean +/- SD, at STP conditions) and 15 +/- 17 Mm(-1) (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Angstrom scattering exponent, 0.49 +/- 0.62. Especially from February to June the Angstrom scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm(-1)) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m(2) g(-1) and 0.4 m(2) g(-1), respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m(2) g(-1) and 0.8 m(2) g(-1), respectively.Peer reviewe

    Effect of polyhedral-oligomeric-sil-sesquioxanes on thermal and mechanical behavior of SC-15 epoxy

    No full text
    • …
    corecore