18 research outputs found

    Estimation of age at death: examination of variation in cortical bone histology within the human clavicle

    Get PDF
    Background: Continuously, numerous human remains of unknown identity are revealed all over the world. One of the elements of the identification process may be a proper assessment of a histological section of bone fragments in order to answer questions related to the age of the subject. The aim of the study was to define an optimum bone fragment to obtain samples for histological examination. Materials and methods: The study material consisted of fragments of shafts of left clavicles taken from 39 males and 25 females (aged 22–86). The clavicles came from autopsies conducted between 2005 and 2011 at the Department of Forensic Medicine of Poznan and the Bialystok Medical University. The following were taken into account while estimating the age of the bone remains: clavicle length (CL), clavicle width (CW), clavicle thickness (CT), number of osteons in the field of vision (ON), number of osteons with the Haversian canal of more than 70 μm (HC > 70 μm), average diameter of the Haversian canals (avg. ØHC), area occupied by interstitial lamellae (ILA %), area occupied by osteons (OA %), area occupied by fragments-remnants of osteons remain as irregular arcs of lamellar fragments (OFA %), average thickness of outer circumferential lamellae (avg. OCL, μm), the relation of osteons with the Haversian canal of more than 70 μm in diameter to the total number of osteons (HC > 70 μm, %), at p < 0.00001. The age of the bone remains was estimated using univariate linear regression function. Results: It was determined that the best place for sampling the osseous tissue for the analysis was the shaft of the clavicle. It was stated than the number of osteons with a large diameter increased with age. The relation of osteons with the Haversian canal of more than 70 μm in diameter to the total number of osteons (HC > 70 μm, %). The level of statistical significant was p < 0.00001. All analysed microscopic features of the osseous tissue showed significant statistical changes occurring with age. Conclusions: The exact method for preparing osseous tissue for a microscopic analysis to determine the age of the remains is the preparation of histological sections, as the structure of the osseous tissue does not change while processing the material and the time of preparations is relatively short (7–8 days). The best predictors of age with the use of the function of univariate linear regression were: the diameter of Haversian canal, the number of osteons with Haversian canal of more than 70 μm in diameter, the relation of osteons with Haversian canal bigger than 70 μm in diameter to the total number of osteons as well as fragments of secondary osteons

    Imine-Based Architectures at Surfaces and Interfaces: From Self-Assembly to Dynamic Covalent Chemistry in 2D

    Get PDF
    Within the last two decades, dynamic covalent chemistry (DCC) has emerged as an efficient and versatile strategy for the design and synthesis of complex molecular systems in solution. While early examples of supramolecularly assisted covalent synthesis at surfaces relied strongly on kinetically controlled reactions for post-assembly covalent modification, the DCC method takes advantage of the reversible nature of bond formation and allows the generation of the new covalently bonded structures under thermodynamic control. These structurally complex architectures obtained by means of DCC protocols offer a wealth of solutions and opportunities in the generation of new complex materials that possess sophisticated properties. In this focus review we examine the formation of covalently bonded imine-based discrete nanostructures as well as one-dimensional (1D) polymers and two-dimensional (2D) covalent organic frameworks (COFs) physisorbed on solid substrates under various experimental conditions, for example, under ultra-high vacuum (UHV) or at the solid–liquid interface. Scanning tunneling microscopy (STM) was used to gain insight, with a sub-nanometer resolution, into the structure and properties of those complex nanopatterns

    Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets

    Get PDF
    Phyllosilicates are layered materials possessing unique thermal properties, commonly exploited in their multilayered crystalline form as refractory insulators and heating elements. A more versatile use of such materials, however, would require their existence in the form of inks and dispersions ready to be patterned. Within this framework, the liquid-phase exfoliation of low-cost, low-purity materials such as bulk multiphasic minerals and powders represents an economically advantageous approach for the production of 2D nano-sized objects with a defined composition, size and morphology. Here, ultrasound-assisted exfoliation and shear-mixing of a multi-phasic vermiculite in mild acidic aqueous solutions were employed to successfully obtain dispersions of mono- and few-layer thick clay nanosheets. The exfoliated materials were thoroughly investigated through granulometry, X-Ray Diffraction (XRD), specific surface area measurements and AFM imaging. Despite the fact that the lateral size and the thickness distribution of exfoliated flakes obtained with the two approaches appear similar, the ultrasound-assisted exfoliation process yielded a larger amount of mono- and bi-layer thick flakes as well as materials with a higher specific surface area. XRD analysis revealed that the use of ultrasound waves in an acidic environment results in the complete exfoliation of the vermiculite layer, whereas the use of shear forces under the same conditions results in the exfoliation of hydrobiotite and mica crystalline phases. Thermal conductivity measurements provided clear evidence on how the structural changes – arising from the exfoliation process – have a direct impact on the properties of the exfoliated clay. Remarkably, compared to the raw material, the thermal conductivity of the exfoliated material decreases by 25%, reaching the ultra-low thermal conductivity regime (<0.1 W m−1 K−1). Our approach may enable in the future the generation of patterns of thermal insulators onto different surfaces by applying vermiculite nanosheets in the form of dispersions and printable inks

    Morphology and Electronic Properties of Electrochemically Exfoliated Graphene

    Get PDF
    Electrochemically exfoliated graphene (EEG) possesses optical and electronic properties that are markedly different from those of the more explored graphene oxide in both its pristine and reduced forms. EEG also holds a unique advantage compared to other graphenes produced by exfoliation in liquid media: it can be obtained in large quantities in a short time. However, an in-depth understanding of the structure–properties relationship of this material is still lacking. In this work, we report physicochemical characterization of EEG combined with an investigation of the electronic properties of this material carried out both at the single flake level and on the films. Additionally, we use for the first time microwave irradiation to reduce the EEG and demonstrate that the oxygen functionalities are not the bottleneck for charge transport in EEG, which is rather hindered by the presence of structural defects within the basal plane

    MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions

    Get PDF
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) are continuously attracting attention for both fundamental studies and technological applications. The physical and chemical properties of ultrathin TMD sheets are extraordinarily different from those of the corresponding bulk materials and for this reason their production is a stimulating topic, especially when the preparation method enables to obtain a remarkable yield of nanosheets with large area and high quality. Herein, we present a fast (<1 h) electrochemical exfoliation of molybdenum disulfide (MoS2) via lithium-ion intercalation, by using a solution of lithium chloride in dimethyl sulfoxide (DMSO). Unlike the conventional intercalation methods based on dangerous organolithium compounds, our approach leads to the possibility to obtain mono-, bi- and tri-layer thick MoS2 nanosheets with a large fraction of the semiconducting 2H phase (∼60%), as estimated by X-ray photoelectron spectroscopy (XPS). The electrical properties of the exfoliated material were investigated through the fabrication and characterization of back-gated field-effect transistors (FETs) based on individual MoS2 nanosheets. As-fabricated devices displayed unipolar semiconducting behavior (n-type) with field-effect mobility µFE ≤ 10−3 cm2 V−1 s−1 and switching ratio Ion/Ioff ≤ 10, likely limited by 1T/2H polymorphism and defects (e.g. sulfur vacancies) induced during the intercalation/exfoliation process. A significant enhancement of the electrical performances could be achieved through a combination of vacuum annealing (150 °C) and sulfur-vacancy healing with vapors of short-chain alkanethiols, resulting in µFE up to 2 × 10−2 cm2 V−1 s−1 and Ion/Ioff ≈ 100. Our results pave the way towards the fast preparation – under ambient conditions – of semiconducting MoS2 nanosheets, suitable for application in low cost (opto-)electronic devices

    The Effect of Contrast Medium SonoVue® on the Electric Charge Density of Blood Cells

    Get PDF
    The effect of contrast medium SonoVue® on the electric charge density of blood cells (erythrocytes and thrombocytes) was measured using a microelectrophoretic method. We examined the effect of adsorbed H+ and OH− ions on the surface charge of erythrocytes or thrombocytes. Surface charge density values were determined from electrophoretic mobility measurements of blood cells performed at various pH levels. The interaction between solution ions and the erythrocyte’s or thrombocyte’s surface was described by a four-component equilibrium model. The agreement between the experimental and theoretical charge variation curves of the erythrocytes and thrombocytes was good at pH 2–9. The deviation observed at a higher pH may be caused by disregarding interactions between the functional groups of blood cells

    CLUH granules coordinate translation of mitochondrial proteins with mTORC1 signaling and mitophagy

    No full text
    Mitochondria house anabolic and catabolic processes that must be balanced and adjusted to meet cellular demands. The RNA-binding protein CLUH (clustered mitochondria homolog) binds mRNAs of nuclear-encoded mitochondrial proteins and is highly expressed in the liver, where it regulates metabolic plasticity. Here, we show that in primary hepatocytes, CLUH coalesces in specific ribonucleoprotein particles that define the translational fate of target mRNAs, such as Pcx, Hadha, and Hmgcs2, to match nutrient availability. Moreover, CLUH granules play signaling roles, by recruiting mTOR kinase and the RNA-binding proteins G3BP1 and G3BP2. Upon starvation, CLUH regulates translation of Hmgcs2, involved in ketogenesis, inhibits mTORC1 activation and mitochondrial anabolic pathways, and promotes mitochondrial turnover, thus allowing efficient reprograming of metabolic function. In the absence of CLUH, a mitophagy block causes mitochondrial clustering that is rescued by rapamycin treatment or depletion of G3BP1 and G3BP2. Our data demonstrate that metabolic adaptation of liver mitochondria to nutrient availability depends on a compartmentalized CLUH-dependent post-transcriptional mechanism that controls both mTORC1 and G3BP signaling and ensures survival
    corecore