55 research outputs found

    Monitoring Coxiella burnetii Infection in Naturally Infected Dairy Sheep Flocks Throughout Four Lambing Seasons and Investigation of Viable Bacteria.

    Get PDF
    Progression of Coxiella burnetii infection in four naturally infected sheep flocks, and in their farm environment, was monitored throughout four lambing seasons. Flocks with an active infection were selected based on the presence of C. burnetii DNA in bulk-tank milk (BTM) and a high seroprevalence in yearlings during the previous milking period (Spring 2015). During four consecutive lambing seasons (2015/16-2018/19), samples were collected within 1 week after each lambing period from animals (vaginal swabs, milk and feces from ewes, and yearlings) and the environment (dust indoor sheep premises). BTM samples and aerosols (outdoors and indoors) were monthly collected between lambing and the end of milking. Real-time PCR analyses showed different trends in C. burnetii shedding in the flocks, with a general progressive decrease in bacterial shedding throughout the years, interrupted in three flocks by peaks of reinfection associated with specific management practices. A significant relationship was found between C. burnetii fecal shedding and the bacterial burden detected in dust, whereas shedding by vaginal route affected the detection of C. burnetii in indoor aerosols. Three genotypes were identified: SNP8 (three flocks, 52.9% of the samples), SNP1 (two flocks, 44.8% samples), and SNP5 (one flock, two environmental samples). Coxiella burnetii viability in dust measured by culture in Vero cells was demonstrated in two of the flocks, even during the fourth lambing season. The results showed that infection can remain active for over 5 years if effective control and biosafety measures are not correctly implemented.This work was funded by INIA—Spanish National Institute for Agricultural and Food Research and Technology (RTA2017-00055-C02-00), the European Regional Development Funds (ERDF), and the Basque Government. RÁ-A is beneficiary of a Ph.D. contract funded by INIA (FPI-2015-014). The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.S

    A Novel Obligate Intracellular Gamma-Proteobacterium Associated with Ixodid Ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov

    Get PDF
    Background: Obligate intracellular bacteria of arthropods often exhibit a significant role in either human health or arthropod ecology. Methodology/Principal Findings: An obligate intracellular gamma-proteobacterium was isolated from the actively questing hard tick Ixodes ricinus using mammalian and amphibian cell lines. Transmission electron microscopy revealed a unique morphology of the bacterium, including intravacuolar localization of bacteria grouped predominantly in pairs and internal structures composed of electron-dense crystal-like structures and regular multilayer sheath-like structures. The isolate 20B was characterized to determine its taxonomic position using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that this strain belongs to the family Coxiellaceae, order Legionellales of Gamma-proteobacteria, and the closest relatives are different Rickettsiella spp. The level of 16S rRNA gene sequence similarity between strain 20B and other recognized species of the family was below 94.5%. Partial sequences of the rpoB, parC and ftsY genes confirmed the phylogenetic position of the new isolate. The G+C content estimated on the basis of whole genome analysis of strain 20B was 37.88%. On the basis of its phenotypic and genotypic properties, together with phylogenetic distinctiveness, we propose that strain 20B to be classified in the new genus Diplorickettsia as the type strain of a novel species named Diplorickettsia massiliensis sp. nov. Conclusions/Significance: Considering the source of its isolation (hard tick, often biting humans) the role of this bacterium in the pathology of humans, animals and ticks should be further investigated

    Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life

    Get PDF
    BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (approximately 1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets
    corecore