113 research outputs found

    Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites

    Get PDF
    Position-weight matrices (PWMs) are broadly used to locate transcription factor binding sites in DNA sequences. The majority of existing PWMs provide a low level of both sensitivity and specificity. We present a new computational algorithm, a modification of the Staden–Bucher approach, that improves the PWM. We applied the proposed technique on the PWM of the GC-box, binding site for Sp1. The comparison of old and new PWMs shows that the latter increase both sensitivity and specificity. The statistical parameters of GC-box distribution in promoter regions and in the human genome, as well as in each chromosome, are presented. The majority of commonly used PWMs are the 4-row mononucleotide matrices, although 16-row dinucleotide matrices are known to be more informative. The algorithm efficiently determines the 16-row matrices and preliminary results show that such matrices provide better results than 4-row matrices

    The features of Drosophila core promoters revealed by statistical analysis

    Get PDF
    BACKGROUND: Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. RESULTS: Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE), and Motif Ten Element (MTE), as well as core elements discovered in Human (TFIIB Recognition Element (BRE) and Downstream Core Element (DCE)). Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE) were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s). Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. CONCLUSION: We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species

    G+C content dominates intrinsic nucleosome occupancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relative preference of nucleosomes to form on individual DNA sequences plays a major role in genome packaging. A wide variety of DNA sequence features are believed to influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other short motifs, and sequence properties that influence DNA structure, including base content. It was recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an entire genome <it>in vitro</it>. However, the model is complicated, and it is not clear which specific DNA sequence properties are most important for intrinsic nucleosome-forming preferences.</p> <p>Results</p> <p>We find that a simple linear combination of only 14 simple DNA sequence attributes (G+C content, two transformations of dinucleotide composition, and the frequency of eleven 4-bp sequences) explains nucleosome occupancy <it>in vitro </it>and <it>in vivo </it>in a manner comparable to the Kaplan model. G+C content and frequency of AAAA are the most important features. G+C content is dominant, alone explaining ~50% of the variation in nucleosome occupancy <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our findings provide a dramatically simplified means to predict and understand intrinsic nucleosome occupancy. G+C content may dominate because it both reduces frequency of poly-A-like stretches and correlates with many other DNA structural characteristics. Since G+C content is enriched or depleted at many types of features in diverse eukaryotic genomes, our results suggest that variation in nucleotide composition may have a widespread and direct influence on chromatin structure.</p

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    Human SWI/SNF directs sequence-specific chromatin changes on promoter polynucleosomes

    Get PDF
    Studies in humans and other species have revealed that a surprisingly large fraction of nucleosomes adopt specific positions on promoters, and that these positions appear to be determined by nucleosome positioning DNA sequences (NPSs). Recent studies by our lab, using minicircles containing only one nucleosome, indicated that the human SWI/SNF complex (hSWI/SNF) prefers to relocate nucleosomes away from NPSs. We now make use of novel mapping techniques to examine the hSWI/SNF sequence preference for nucleosome movement in the context of polynucleosomal chromatin, where adjacent nucleosomes can limit movement and where hSWI/SNF forms altered dinucleosomal structures. Using two NPS templates (5S rDNA and 601) and two hSWI/SNF target promoter templates (c-myc and UGT1A1), we observed hSWI/SNF-driven depletion of normal mononucleosomes from almost all positions that were strongly favored by assembly. In some cases, these mononucleosomes were moved to hSWI/SNF-preferred sequences. In the majority of other cases, one repositioned mononucleosome appeared to combine with an unmoved mononucleosome forming a specifically localized altered or normal dinucleosome. These effects result in dramatic, template-specific changes in nucleosomal distribution. Taken together, these studies indicate hSWI/SNF is likely to activate or repress transcription of its target genes by generating promoter sequence-specific changes in chromatin configuration

    Transcriptional interaction-assisted identification of dynamic nucleosome positioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleosomes regulate DNA accessibility and therefore play a central role in transcription control. Computational methods have been developed to predict static nucleosome positions from DNA sequences, but nucleosomes are dynamic in vivo.</p> <p>Results</p> <p>Motivated by our observation that transcriptional interaction is discriminative information for nucleosome occupancy, we developed a novel computational approach to identify dynamic nucleosome positions at promoters by combining transcriptional interaction and genomic sequence information. Our approach successfully identified experimentally determined nucleosome positioning dynamics available in three cellular conditions, and significantly improved the prediction accuracy which is based on sequence information alone. We then applied our approach to various cellular conditions and established a comprehensive landscape of dynamic nucleosome positioning in yeast.</p> <p>Conclusion</p> <p>Analysis of this landscape revealed that the majority of nucleosome positions are maintained during most conditions. However, nucleosome occupancy at most promoters fluctuates with the corresponding gene expression level and is reduced specifically at the phase of peak expression. Further investigation into properties of nucleosome occupancy identified two gene groups associated with distinct modes of nucleosome modulation. Our results suggest that both the intrinsic sequence and regulatory proteins modulate nucleosomes in an altered manner.</p

    Conformation Regulation of the X Chromosome Inactivation Center: A Model

    Get PDF
    X-Chromosome Inactivation (XCI) is the process whereby one, randomly chosen X becomes transcriptionally silenced in female cells. XCI is governed by the Xic, a locus on the X encompassing an array of genes which interact with each other and with key molecular factors. The mechanism, though, establishing the fate of the X's, and the corresponding alternative modifications of the Xic architecture, is still mysterious. In this study, by use of computer simulations, we explore the scenario where chromatin conformations emerge from its interaction with diffusing molecular factors. Our aim is to understand the physical mechanisms whereby stable, non-random conformations are established on the Xic's, how complex architectural changes are reliably regulated, and how they lead to opposite structures on the two alleles. In particular, comparison against current experimental data indicates that a few key cis-regulatory regions orchestrate the organization of the Xic, and that two major molecular regulators are involved

    Dissecting Nucleosome Free Regions by a Segmental Semi-Markov Model

    Get PDF
    BACKGROUND: Nucleosome free regions (NFRs) play important roles in diverse biological processes including gene regulation. A genome-wide quantitative portrait of each individual NFR, with their starting and ending positions, lengths, and degrees of nucleosome depletion is critical for revealing the heterogeneity of gene regulation and chromatin organization. By averaging nucleosome occupancy levels, previous studies have identified the presence of NFRs in the promoter regions across many genes. However, evaluation of the quantitative characteristics of individual NFRs requires an NFR calling method. METHODOLOGY: In this study, we propose a statistical method to identify the patterns of NFRs from a genome-wide measurement of nucleosome occupancy. This method is based on an appropriately designed segmental semi-Markov model, which can capture each NFR pattern and output its quantitative characterizations. Our results show that the majority of the NFRs are located in intergenic regions or promoters with a length of about 400-600bp and varying degrees of nucleosome depletion. Our quantitative NFR mapping allows for an investigation of the relative impacts of transcription machinery and DNA sequence in evicting histones from NFRs. We show that while both factors have significant overall effects, their specific contributions vary across different subtypes of NFRs. CONCLUSION: The emphasis of our approach on the variation rather than the consensus of nucleosome free regions sets the tone for enabling the exploration of many subtler dynamic aspects of chromatin biology

    The Set2/Rpd3S Pathway Suppresses Cryptic Transcription without Regard to Gene Length or Transcription Frequency

    Get PDF
    In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. It was previously reported that this “cryptic” transcription occurs preferentially in long genes, and in genes that are infrequently transcribed. Here, we mapped the transcripts produced in an S. cerevisiae strain lacking Set2, and applied rigorous statistical methods to identify sites of cryptic transcription at high resolution. We find that suppression of cryptic transcription occurs independent of gene length or transcriptional frequency. Our conclusions differ with those reported previously because we obtained a higher-resolution dataset, we accounted for the fact that gene length and transcriptional frequency are not independent variables, and we accounted for several ascertainment biases that make cryptic transcription easier to detect in long, infrequently transcribed genes. These new results and conclusions have implications for many commonly used genomic analysis approaches, and for the evolution of high-fidelity RNA polymerase II transcriptional initiation in eukaryotes
    corecore