3,310 research outputs found

    Nonequilibrium Temperature and Thermometry in Heat-Conducting Phi-4 Models

    Full text link
    We analyze temperature and thermometry for simple nonequilibrium heat-conducting models. We show in detail, for both two- and three-dimensional systems, that the ideal gas thermometer corresponds to the concept of a local instantaneous mechanical kinetic temperature. For the Phi-4 models investigated here the mechanical temperature closely approximates the local thermodynamic equilibrium temperature. There is a significant difference between kinetic temperature and the nonlocal configurational temperature. Neither obeys the predictions of extended irreversible thermodynamics. Overall, we find that kinetic temperature, as modeled and imposed by the Nos\'e-Hoover thermostats developed in 1984, provides the simplest means for simulating, analyzing, and understanding nonequilibrium heat flows.Comment: 20 pages with six figures, revised following review at Physical Review

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Time-reversed symmetry and covariant Lyapunov vectors for simple particle models in and out of thermal equilibrium

    Full text link
    Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding local Lyapunov exponents has become available. Here we study the properties of these still unfamiliar quantities for a number of simple models, including an harmonic oscillator coupled to a thermal gradient with a two-stage thermostat, which leaves the system ergodic and fully time reversible. We explicitly demonstrate how time-reversal invariance affects the perturbation vectors in tangent space and the associated local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously along directions transverse to the phase flow.Comment: 13 pages, 11 figures submitted to Physical Review E, 201

    Steady-state conduction in self-similar billiards

    Full text link
    The self-similar Lorentz billiard channel is a spatially extended deterministic dynamical system which consists of an infinite one-dimensional sequence of cells whose sizes increase monotonically according to their indices. This special geometry induces a nonequilibrium stationary state with particles flowing steadily from the small to the large scales. The corresponding invariant measure has fractal properties reflected by the phase-space contraction rate of the dynamics restricted to a single cell with appropriate boundary conditions. In the near-equilibrium limit, we find numerical agreement between this quantity and the entropy production rate as specified by thermodynamics

    Scaling Solutions to 6D Gauged Chiral Supergravity

    Get PDF
    We construct explicitly time-dependent exact solutions to the field equations of 6D gauged chiral supergravity, compactified to 4D in the presence of up to two 3-branes situated within the extra dimensions. The solutions we find are scaling solutions, and are plausibly attractors which represent the late-time evolution of a broad class of initial conditions. By matching their near-brane boundary conditions to physical brane properties we argue that these solutions (together with the known maximally-symmetric solutions and a new class of non-Lorentz-invariant static solutions, which we also present here) describe the bulk geometry between a pair of 3-branes with non-trivial on-brane equations of state.Comment: Contribution to the New Journal of Physics focus issue on Dark Energy; 28 page

    Log-periodic drift oscillations in self-similar billiards

    Full text link
    We study a particle moving at unit speed in a self-similar Lorentz billiard channel; the latter consists of an infinite sequence of cells which are identical in shape but growing exponentially in size, from left to right. We present numerical computation of the drift term in this system and establish the logarithmic periodicity of the corrections to the average drift

    Lyapunov instability of fluids composed of rigid diatomic molecules

    Full text link
    We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with two interaction sites each, and interacting with a WCA site-site potential. We compute full spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Quam. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of freedom -- such as rotation and translation -- affect the Lyapunov spectrum differently. We study this phenomenon by systematically varying the molecular shape and the density. We define and evaluate ``rotation numbers'' measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories is also studied in certain subspaces of the phase space associated with center-of-mass and orientational molecular motion.Comment: RevTeX 14 pages, 7 PostScript figures. Accepted for publication in Phys. Rev.

    Kicking the Rugby Ball: Perturbations of 6D Gauged Chiral Supergravity

    Get PDF
    We analyze the axially-symmetric scalar perturbations of 6D chiral gauged supergravity compactified on the general warped geometries in the presence of two source branes. We find all of the conical geometries are marginally stable for normalizable perturbations (in disagreement with some recent calculations) and the nonconical for regular perturbations, even though none of them are supersymmetric (apart from the trivial Salam-Sezgin solution, for which there are no source branes). The marginal direction is the one whose presence is required by the classical scaling property of the field equations, and all other modes have positive squared mass. In the special case of the conical solutions, including (but not restricted to) the unwarped `rugby-ball' solutions, we find closed-form expressions for the mode functions in terms of Legendre and Hypergeometric functions. In so doing we show how to match the asymptotic near-brane form for the solution to the physics of the source branes, and thereby how to physically interpret perturbations which can be singular at the brane positions.Comment: 21 pages + appendices, references adde

    Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering

    Full text link
    In recent work a deterministic and time-reversible boundary thermostat called thermostating by deterministic scattering has been introduced for the periodic Lorentz gas [Phys. Rev. Lett. {\bf 84}, 4268 (2000)]. Here we assess the nonlinear properties of this new dynamical system by numerically calculating its Lyapunov exponents. Based on a revised method for computing Lyapunov exponents, which employs periodic orthonormalization with a constraint, we present results for the Lyapunov exponents and related quantities in equilibrium and nonequilibrium. Finally, we check whether we obtain the same relations between quantities characterizing the microscopic chaotic dynamics and quantities characterizing macroscopic transport as obtained for conventional deterministic and time-reversible bulk thermostats.Comment: 18 pages (revtex), 7 figures (postscript

    Evidence of Microfossils in Carbonaceous Chondrites

    Get PDF
    Investigations have been carried out on freshly broken, internal surfaces of the Murchison, Efremovka and Orgueil carbonaceous chondrites using Scanning Electron Microscopes (SEM) in Russia and the Environmental Scanning Electron Microscope (ESEM) in the United States. These independent studies on different samples of the meteorites have resulted in the detection of numerous spherical and ellipsoidal bodies (some with spikes) similar to the forms of uncertain biogenicity that were designated "organized elements" by prior researchers. We have also encountered numerous complex biomorphic microstructures in these carbonaceous chondrites. Many of these complex bodies exhibit diverse characteristics reminiscent of microfossils of cyanobacteria such as we have investigated in ancient phosphorites and high carbon rocks (e.g. oil shales). Energy Dispersive Spectroscopy (EDS) analysis and 2D elemental maps shows enhanced carbon content in the bodies superimposed upon the elemental distributions characteristic of the chondritic matrix. The size, distribution, composition, and indications of cell walls, reproductive and life cycle developmental stages of these bodies are strongly suggestive of biology' These bodies appear to be mineralized and embedded within the meteorite matrix, and can not be attributed to recent surface contamination effects. Consequently, we have interpreted these in-situ microstructures to represent the lithified remains of prokaryotes and filamentous cyanobacteria. We also detected in Orgueil microstructures morphologically similar to fibrous kerite crystals. We present images of many biomorphic microstructures and possible microfossils found in the Murchison, Efremovka, and Orgueil chondrites and compare these forms with known microfossils from the Cambrian phosphate-rich rocks (phosphorites) of Khubsugul, Northern Mongolia
    corecore