2,967 research outputs found

    Strange matter in core-collapse supernovae

    Full text link
    We discuss the possible impact of strange quark matter on the evolution of core-collapse supernovae with emphasis on low critical densities for the quark-hadron phase transition. For such cases the hot proto-neutron star can collapse to a more compact hybrid star configuration hundreds of milliseconds after core-bounce. The collapse triggers the formation of a second shock wave. The latter leads to a successful supernova explosion and leaves an imprint on the neutrino signal. These dynamical features are discussed with respect to their compatibility with recent neutron star mass measurements which indicate a stiff high density nuclear matter equation of state.Comment: 8 pages, 3 figures, Invited talk at the "Strangeness in Quark Matter" conference, 18-24 September 2011, Polish Academy of Arts and Sciences, Cracow, Polan

    Unravelling the Dodecahedral Spaces

    Full text link
    The hyperbolic dodecahedral space of Weber and Seifert has a natural non-positively curved cubulation obtained by subdividing the dodecahedron into cubes. We show that the hyperbolic dodecahedral space has a 6-sheeted irregular cover with the property that the canonical hypersurfaces made up of the mid-cubes give a very short hierarchy. Moreover, we describe a 60-sheeted cover in which the associated cubulation is special. We also describe the natural cubulation and covers of the spherical dodecahedral space (aka Poincar\'e homology sphere).Comment: 15 pages + 6 pages appendix, 7 figures, 4 table

    Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    Full text link
    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm^2 size and 525 micro m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10 % at 950 V. The signal size obtained from electrons crossing the stack at this voltage is about 22000 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20 % in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.Comment: 13 pages, 7 figures, 3 table

    The Effect of Cu Zn Disorder on Charge Carrier Mobility and Lifetime in Cu2ZnSnSe4

    Get PDF
    Cu Zn disorder is one possible origin for the limited efficiencies of kesterite solar cells and its impact on the band gap and band tails have been intensively studied. However, the effect on charge transport and recombination, which are key properties for solar cells, has not been investigated so far. Therefore, we probe the impact of the Cu Zn order on charge carrier mobility and lifetime. To this end, we change the Cu Zn order of a co evaporated Cu2ZnSnSe4 thin film by sequential annealing and probe the impact by time resolved terahertz spectroscopy. Aside from of the well known band gap shift, we find no significant change in mobility and lifetime with Cu Zn order. This finding indicates that Cu Zn disorder is not limiting efficiencies of kesterite solar cells at their current status by means of charge carrier recombination and transpor

    Solomonoff Induction Violates Nicod's Criterion

    Full text link
    Nicod's criterion states that observing a black raven is evidence for the hypothesis H that all ravens are black. We show that Solomonoff induction does not satisfy Nicod's criterion: there are time steps in which observing black ravens decreases the belief in H. Moreover, while observing any computable infinite string compatible with H, the belief in H decreases infinitely often when using the unnormalized Solomonoff prior, but only finitely often when using the normalized Solomonoff prior. We argue that the fault is not with Solomonoff induction; instead we should reject Nicod's criterion.Comment: ALT 201

    Is there Quark Matter in (Low-Mass) Pulsars?

    Full text link
    The effect of the QCD phase transition is studied for the mass-radius relation of compact stars and for hot and dense matter at a given proton fraction used as input in core-collapse supernova simulations. The phase transitions to the 2SC and CFL color superconducting phases lead to stable hybrid star configurations with a pure quark matter core. In supernova explosions quark matter could be easily produced due to β\beta-equilibrium, small proton fractions and nonvanishing temperatures. A low critical density for the phase transition to quark matter is compatible with present pulsar mass measurements.Comment: 4 pages, 3 figures, talk given at the QM2008 conference, Jaipur, India, February 4-10, 2008, JPG in pres
    • …
    corecore