3,434 research outputs found

    Ion collection by oblique surfaces of an object in a transversely-flowing strongly-magnetized plasma

    Get PDF
    The equations governing a collisionless obliquely-flowing plasma around an ion-absorbing object in a strong magnetic field are shown to have an exact analytic solution even for arbitrary (two-dimensional) object-shape, when temperature is uniform, and diffusive transport can be ignored. The solution has an extremely simple geometric embodiment. It shows that the ion collection flux density to a convex body's surface depends only upon the orientation of the surface, and provides the theoretical justification and calibration of oblique `Mach-probes'. The exponential form of this exact solution helps explain the approximate fit of this function to previous numerical solutions.Comment: Four pages, 2 figures. Submitted to Phys. Rev. Letter

    Grimmia pseudo-anodon new to Bolivia

    Get PDF
    Grimmia pseudo-anodon Deguchi, previously known only from Peru, is reported as new to Bolivia. The specimens are from packets labelled as Coscinodon trinervis, collected by Herzog in 1911. Grimmia pseudo-anodon is distinct by its non-plicate leaves and straight, centrally attached seta. This is a range extension of some 300 km and an elevational increase of about 1000 m

    Strong and weak thermalization of infinite non-integrable quantum systems

    Full text link
    When a non-integrable system evolves out of equilibrium for a long time, local observables are expected to attain stationary expectation values, independent of the details of the initial state. However, intriguing experimental results with ultracold gases have shown no thermalization in non-integrable settings, triggering an intense theoretical effort to decide the question. Here we show that the phenomenology of thermalization in a quantum system is much richer than its classical counterpart. Using a new numerical technique, we identify two distinct thermalization regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well-known in classical systems, happens when local expectation values converge to the thermal ones only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.Comment: 12 pages, 21 figures, including additional materia

    A short proof of stability of topological order under local perturbations

    Full text link
    Recently, the stability of certain topological phases of matter under weak perturbations was proven. Here, we present a short, alternate proof of the same result. We consider models of topological quantum order for which the unperturbed Hamiltonian H0H_0 can be written as a sum of local pairwise commuting projectors on a DD-dimensional lattice. We consider a perturbed Hamiltonian H=H0+VH=H_0+V involving a generic perturbation VV that can be written as a sum of short-range bounded-norm interactions. We prove that if the strength of VV is below a constant threshold value then HH has well-defined spectral bands originating from the low-lying eigenvalues of H0H_0. These bands are separated from the rest of the spectrum and from each other by a constant gap. The width of the band originating from the smallest eigenvalue of H0H_0 decays faster than any power of the lattice size.Comment: 15 page

    Multiscaling at Point J: Jamming is a Critical Phenomenon

    Full text link
    We analyze the jamming transition that occurs as a function of increasing packing density in a disordered two-dimensional assembly of disks at zero temperature for ``Point J'' of the recently proposed jamming phase diagram. We measure the total number of moving disks and the transverse length of the moving region, and find a power law divergence as the packing density increases toward a critical jamming density. This provides evidence that the T = 0 jamming transition as a function of packing density is a {\it second order} phase transition. Additionally we find evidence for multiscaling, indicating the importance of long tails in the velocity fluctuations.Comment: 4 pages, 5 figures; extensive new numerical data; final version in press at PR

    Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice

    Get PDF
    There is growing evidence from both experiment and numerical studies that low half-odd integer quantum spins on a kagome lattice with predominant antiferromagnetic near neighbor interactions do not order magnetically or break lattice symmetries even at temperatures much lower than the exchange interaction strength. Moreover, there appear to be a plethora of low energy excitations, predominantly singlets but also spin carrying, which suggest that the putative underlying quantum spin liquid is a gapless ``critical spin liquid'' rather than a gapped spin liquid with topological order. Here, we develop an effective field theory approach for the spin-1/2 Heisenberg model with easy-plane anisotropy on the kagome lattice. By employing a vortex duality transformation, followed by a fermionization and flux-smearing, we obtain access to a gapless yet stable critical spin liquid phase, which is described by (2+1)-dimensional quantum electrodynamics (QED3_3) with an emergent SU(8)\mathrm{SU}(8) flavor symmetry. The specific heat, thermal conductivity, and dynamical structure factor are extracted from the effective field theory, and contrasted with other theoretical approaches to the kagome antiferromagnet.Comment: 14 pages, 8 figure

    Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

    Full text link
    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure

    Random quantum channels I: graphical calculus and the Bell state phenomenon

    Full text link
    This paper is the first of a series where we study quantum channels from the random matrix point of view. We develop a graphical tool that allows us to compute the expected moments of the output of a random quantum channel. As an application, we study variations of random matrix models introduced by Hayden \cite{hayden}, and show that their eigenvalues converge almost surely. In particular we obtain for some models sharp improvements on the value of the largest eigenvalue, and this is shown in a further work to have new applications to minimal output entropy inequalities.Comment: Several typos were correcte
    • …
    corecore