914 research outputs found

    Antinuclear Antibodies (ANA) in Gordon Setters with Symmetrical Lupoid Onychodystrophy and Black Hair Follicular Dysplasia

    Get PDF
    Antinuclear antibodies (ANA) were demonstrated in 3 out of 10 Gordon setters with symmetrical lupoid onychodystrophy and in 5 out of 13 Gordon setters with black hair follicular dysplasia. Two dogs showed both symmetrical lupoid onychodystrophy and black hair follicular dysplasia, and one of these was ANA positive. The results suggest that symmetrical lupoid onychodystrophy and black hair follicular dysplasia in the Gordon setter might be autoimmune diseases that are pathogenetically related, which might indicate a common genetic predisposition

    Electronic and magnetic properties of the (111) surfaces of NiMnSb

    Full text link
    Using an ab-initio electronic structure method, I study the (111) surfaces of the half-metallic NiMnSb alloy. In all cases there is a very pronounced surface state within the minority gap which destroys the half-metallicity This state survives for several atomic layers below the surface contrary to the (001) surfaces where surface states were located only at the surface layer. The lower dimensionality of the surface leads in general to large enhancements of the surface spin moments

    New High-TcT_c Half-Heusler Ferromagnets NiMnZ (Z = Si, P, Ge, As)

    Full text link
    Based on the first principle calculation, we propose a new class of high-TcT_c half-heusler ferromagnets NiMnZ (Z = Si, P, Ge, As). The structural and magnetic properties are investigated through the calculation of the electronic structure, phase stability, equilibrium lattice constant, magnetic exchange interaction JijJ_{ij} and Curie temperature TcT_c. It is found that all alloys show half-metallicity and ferromagnetism at temperatures much higher than room temperature in a wide range of lattice expansion (compression). At the equilibrium lattice constant, TcT_c of 715K, 840K, 875K and 1050K are predicted by Monte Carlo simulation for NiMnP, NiMnAs, NiMnGe and NiMnSi, respectively. Following these results, these alloys are strongly expected to be promising candidates for spintronic applications.Comment: 6 pages, 6 figure

    Near-Limb Zeeman and Hanle Diagnostics

    Full text link
    "Weak" magnetic-field diagnostics in faint objects near the bright solar disk are discussed in terms of the level of non-object signatures, in particular, of the stray light in telescopes. Calculated dependencies of the stray light caused by diffraction at the 0.5-, 1.6-, and 4-meter entrance aperture are presented. The requirements for micro-roughness of refractive and reflective primary optics are compared. Several methods for reducing the stray light (the Lyot coronagraphic technique, multiple stages of apodizing in the focal and exit pupil planes, apodizing in the entrance aperture plane with a special mask), and reducing the random and systematic errors are noted. An acceptable level of stray light in telescopes is estimated for the V-profile recording with a signal-to-noise ratio greater than three. Prospects for the limb chromosphere magnetic measurements are indicated.Comment: 11 pages, 3 figure

    Half-Metallic Ferrimagnetism in Mn_2VAl

    Full text link
    We show that Mn_2VAl is a compound for which the generalized gradient approximation (GGA) to the exchange-correlation functional in density functional theory makes a qualitative change in predicted behavior compared to the usual local density approximation (LDA). Application of GGA leads to prediction of Mn_2VAl being a half-metallic ferrimagnet, with the minority channel being the conducting one. The electronic and magnetic structure is analyzed and contrasted with the isostructural enhanced semimetal Fe_2VAl.Comment: 5 pages, Latex, 6 postscript figures. Description and figures of the (minority) Fermi surfaces have been adde

    Transverse oscillations of flowing prominence threads observed with Hinode

    Full text link
    Recent observations with the Hinode Solar Optical Telescope display an active region prominence whose fine threads oscillate in the vertical direction as they move along a path parallel to the photosphere. A seismological analysis of this event is carried out by taking advantage of the small radius of these structures compared to the total length of magnetic field lines, i.e. by using the thin tube approximation. This analysis reveals that the oscillatory period is only slightly modified by the existence of the flow and that the difference between the period of a flowing thread and a static one is below the error bars of these observations. Moreover, although it is not possible to obtain values of the physical parameters, a lower bound for the Alfv\'en speed (ranging between 120 km s1^{-1} and 350 km s1^{-1}) is obtained for each of the threads. Such Alfv\'en speeds agree with the intense magnetic fields and large densities usually found in active region prominences

    Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys

    Full text link
    Using the full-potential screened Korringa-Kohn-Rostoker method we study the full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these compounds show a half-metallic behavior, however in contrast to the half-Heusler alloys the energy gap in the minority band is extremely small. These full-Heusler compounds show a Slater-Pauling behavior and the total spin-magnetic moment per unit cell (M_t) scales with the total number of valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the spin-down band contains exactly 12 electrons using arguments based on the group theory and show that this rule holds also for compounds with less than 24 valence electrons. Finally we discuss the deviations from this rule and the differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde

    Bayesian Magnetohydrodynamic Seismology of Coronal Loops

    Full text link
    We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length-scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inhomogeneity length-scale and to estimate real error bars for each parameter. When observational estimates for the density contrast are used, the method enables us to fully constrain the three parameters of interest. These results can serve to improve our current estimates of unknown physical parameters in coronal loops and to test the assumed theoretical model.Comment: 24 pages, 4 figures, 2 table
    corecore