107 research outputs found

    Chemical Evolution of the Galaxy Based on the Oscillatory Star Formation History

    Get PDF
    We model the star formation history (SFH) and the chemical evolution of the Galactic disk by combining an infall model and a limit-cycle model of the interstellar medium (ISM). Recent observations have shown that the SFH of the Galactic disk violently variates or oscillates. We model the oscillatory SFH based on the limit-cycle behavior of the fractional masses of three components of the ISM. The observed period of the oscillation (∼1\sim 1 Gyr) is reproduced within the natural parameter range. This means that we can interpret the oscillatory SFH as the limit-cycle behavior of the ISM. We then test the chemical evolution of stars and gas in the framework of the limit-cycle model, since the oscillatory behavior of the SFH may cause an oscillatory evolution of the metallicity. We find however that the oscillatory behavior of metallicity is not prominent because the metallicity reflects the past integrated SFH. This indicates that the metallicity cannot be used to distinguish an oscillatory SFH from one without oscillations.Comment: 21 pages LaTeX, to appear in Ap

    Dynamics and Excitation of Radio Galaxy Emission-Line Regions - I. PKS 2356-61

    Get PDF
    Results are presented from a programme of detailed longslit spectroscopic observations of the extended emission-line region (EELR) associated with the powerful radio galaxy PKS 2356-61. The observations have been used to construct spectroscopic datacubes, which yield detailed information on the spatial variations of emission-line ratios across the EELR, together with its kinematic structure. We present an extensive comparison between the data and results obtained from the MAPPINGS II shock ionization code, and show that the physical properties of the line-emitting gas, including its ionization, excitation, dynamics and overall energy budget, are entirely consistent with a scenario involving auto-ionizing shocks as the dominant ionization mechanism. This has the advantage of accounting for the observed EELR properties by means of a single physical process, thereby requiring less free parameters than the alternative scheme involving photoionization by radiation from the active nucleus. Finally, possible mechanisms of shock formation are considered in the context of the dynamics and origin of the gas, specifically scenarios involving infall or accretion of gas during an interaction between the host radio galaxy and a companion galaxy.Comment: 35 pages, LaTeX, uses aas2pp4.sty file, includes 9 PostScript figures. Two additional colour plates are available from the authors upon request. Accepted for publication in the Astrophysical Journa

    Dust Properties of NGC4753

    Get PDF
    We report BVR surface photometry of a lenticular galaxy, NGC4753 with prominent dust lanes. We have used the multicolor broadband photometry to study dust-extinction as a function of wavelength and derived the extinction curve. We find the extinction curve of NGC 4753 to be similar to the Galactic extinction curve in the visible region which implies that the sizes of dust grains responsible for optical extinction are similar to those in our Galaxy. We derive dust mass from optical extinction as well as from the far infrared fluxes observed with IRAS. The ratio of the two dust masses, Md,IRASMd,optical\frac{M_{d,IRAS}}{M_{d,optical}}, is 2.28 for NGC 4753, which is significantly lower than the value of 8.4 \pm 1.3 found previously for a large sample of elliptical galaxies. The total mass of the observed dust within NGC4753 is about a factor of 10 higher than the mass of dust expected from loss of mass from red giant stars and destruction by sputtering and grain-grain collisions in low velocity shocks, and sputtering in supernova driven blast waves. We find evidence for the coexistence of dust and HΞ±\alpha emitting gas within NGC4753. The current star formation rate of NGC4753, averaged over past 2Γ—106yr2\times10^{6} yr, is estimated to be less than 0.21M_{\sun}yr^{-1}. A substantial amount of dust within NGC4753 exists in the form of cirrus.Comment: 15 pages, 8 jpeg figures, 5 tables in one file, AASTEX style, Accepted for publication in the Astronomical Journal, 1999 Augus

    GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Get PDF
    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation sub-grid models. Two such models are explored: (1) Density-Regulated, i.e., fixed efficiency per free-fall time above a set density threshold; (2) Magnetically- Regulated, i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial sub-structure and more disturbed kinematics

    How DNA Barcodes Complement Taxonomy and Explore Species Diversity: The Case Study of a Poorly Understood Marine Fauna

    Get PDF
    BACKGROUND: The species boundaries of some venerids are difficult to define based solely on morphological features due to their indistinct intra- and interspecific phenotypic variability. An unprecedented biodiversity crisis caused by human activities has emerged. Thus, to access the biological diversity and further the conservation of this taxonomically muddling bivalve group, a fast and simple approach that can efficiently examine species boundaries and highlight areas of unrecognized diversity is urgently needed. DNA barcoding has proved its effectiveness in high-volume species identification and discovery. In the present study, Chinese fauna was chosen to examine whether this molecular biomarker is sensitive enough for species delimitation, and how it complements taxonomy and explores species diversity. METHODOLOGY/PRINCIPAL FINDINGS: A total of 315 specimens from around 60 venerid species were included, qualifying the present study as the first major analysis of DNA barcoding for marine bivalves. Nearly all individuals identified to species level based on morphological traits possessed distinct barcode clusters, except for the specimens of one species pair. Among the 26 individuals that were not assigned binomial names a priori, twelve respectively nested within a species genealogy. The remaining individuals formed five monophyletic clusters that potentially represent species new to science or at least unreported in China. Five putative hidden species were also uncovered in traditional morphospecies. CONCLUSIONS/SIGNIFICANCE: The present study shows that DNA barcoding is effective in species delimitation and can aid taxonomists by indicating useful diagnostic morphological traits, informing needful revision, and flagging unseen species. Moreover, the BOLD system, which deposits barcodes, morphological, geographical and other data, has the potential as a convenient taxonomic platform

    GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    Get PDF
    We investigate giant molecular cloud (GMCs) collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of three dimensional, magnetohydrodynamics (MHD), adaptive mesh refinement (AMR) simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region (PDR) models that span the atomic to molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; 13CO(J=2-1), 13CO(J=3-2), and 12CO(J=8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds

    The Complete Mitochondrial Genomes of Six Heterodont Bivalves (Tellinoidea and Solenoidea): Variable Gene Arrangements and Phylogenetic Implications

    Get PDF
    BACKGROUND: Taxonomy and phylogeny of subclass Heterodonta including Tellinoidea are long-debated issues and a complete agreement has not been reached yet. Mitochondrial (mt) genomes have been proved to be a powerful tool in resolving phylogenetic relationship. However, to date, only ten complete mitochondrial genomes of Heterodonta, which is by far the most diverse major group of Bivalvia, have been determined. In this paper, we newly sequenced the complete mt genomes of six species belonging to Heterodonta in order to resolve some problematical relationships among this subclass. PRINCIPAL FINDINGS: The complete mt genomes of six species vary in size from 16,352 bp to 18,182. Hairpin-like secondary structures are found in the largest non-coding regions of six freshly sequenced mt genomes, five of which contain tandem repeats. It is noteworthy that two species belonging to the same genus show different gene arrangements with three translocations. The phylogenetic analysis of Heterodonta indicates that Sinonovacula constricta, distant from the Solecurtidae belonging to Tellinoidea, is as a sister group with Solen grandis of family Solenidae. Besides, all five species of Tellinoidea cluster together, while Sanguinolaria diphos has closer relationship with Solecurtus divaricatus, Moerella iridescens and Semele scaba rather than with Sanguinolaria olivacea. CONCLUSIONS/SIGNIFICANCE: By comparative study of gene order rearrangements and phylogenetic relationships of the five species belonging to Tellinoidea, our results support that comparisons of mt gene order rearrangements, to some extent, are a useful tool for phylogenetic studies. Based on phylogenetic analyses of multiple protein-coding genes, we prefer classifying the genus Sinonovacula within the superfamily Solenoidea and not the superfamily Tellinoidea. Besides, both gene order and sequence data agree that Sanguinolaria (Psammobiidae) is not monophyletic. Nevertheless, more studies based on more mt genomes via combination of gene order and phylogenetic analysis are needed to further understand the phylogenetic relationships in subclass Heterodonta
    • …
    corecore