4 research outputs found
Receptor Tyrosine Kinases in Osteosarcoma: 2019 Update
The primary conclusions of our 2014 contribution to this series were as follows:
Multiple receptor tyrosine kinases (RTKs) likely contribute to aggressive phenotypes in osteosarcoma and, therefore, inhibition of multiple RTKs is likely necessary for successful clinical outcomes.
Inhibition of multiple RTKs may also be useful to overcome resistance to inhibitors of individual RTKs as well as resistance to conventional chemotherapies.
Different combinations of RTKs are likely important in individual patients.
AXL, EPHB2, FGFR2, IGF1R, and RET were identified as promising therapeutic targets by our in vitro phosphoproteomic/siRNA screen of 42 RTKs in the highly metastatic LM7 and 143B human osteosarcoma cell lines.
This chapter is intended to provide an update on these topics as well as the large number of osteosarcoma clinical studies of inhibitors of multiple tyrosine kinases (multi-TKIs) that were recently published
Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase
Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK