321 research outputs found

    Drivers of phytoplankton responses to summer wind events in a stratified lake: A modeling study

    Get PDF
    Extreme wind events affect lake phytoplankton by deepening the mixed layer and increasing internal nutrient loading. Both increases and decreases in phytoplankton concentration after strong wind events have been observed, but the precise mechanisms driving these responses remain poorly understood or quantified. We coupled a one-dimensional physical model to a biogeochemical model to investigate the factors regulating short-term phytoplankton responses to summer wind events, now and under expected warmer future conditions. We simulated physical, chemical, and biological dynamics in Lake Erken, Sweden, and found that strong wind could increase or decrease the phytoplankton concentration in the euphotic zone 1 week after the event, depending on antecedent lake physical and chemical conditions. Wind had little effect on phytoplankton concentration if the mixed layer was deep prior to wind exposure. Higher incoming shortwave radiation and hypolimnetic nutrient concentration boosted phytoplankton concentration, whereas higher surface water temperatures decreased concentrations after wind events. Medium-intensity wind events resulted in more phytoplankton than high-intensity wind. Simulations under a future climate scenario did not show marked differences in the way wind events affect phytoplankton concentration. These findings help to better understand how wind impacts vary as a function of local environmental conditions and how climate warming and changing extreme weather dynamics will affect lake ecosystems

    Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events

    Get PDF
    Numerical lake models are useful tools to study hydrodynamics in lakes, and are increasingly applied to extreme weather events. However, little is known about the accuracy of such models during these short-term events. We used high-frequency data from three lakes to test the performance of three one-dimensional (1D) hydrodynamic models (Simstrat, GOTM, GLM) during storms and heatwaves. Models reproduced the overall direction and magnitude of changes during the extreme events, with accurate timing and little bias. Changes in volume-averaged and surface temperatures and Schmidt stability were simulated more accurately than changes in bottom temperature, maximum buoyancy frequency, or mixed layer depth. However, in most cases the model error was higher (30-100%) during extreme events compared to reference periods. As a consequence, while 1D lake models can be used to study effects of extreme weather events, the increased uncertainty in the simulations should be taken into account when interpreting results

    Sighting acute myocardial infarction through platelet gene expression

    Get PDF
    © 2019, The Author(s). Acute myocardial infarction is primarily due to coronary atherosclerotic plaque rupture and subsequent thrombus formation. Platelets play a key role in the genesis and progression of both atherosclerosis and thrombosis. Since platelets are anuclear cells that inherit their mRNA from megakaryocyte precursors and maintain it unchanged during their life span, gene expression profiling at the time of an acute myocardial infarction provides information concerning the platelet gene expression preceding the coronary event. In ST-segment elevation myocardial infarction (STEMI), a gene-by-gene analysis of the platelet gene expression identified five differentially expressed genes: FKBP5, S100P, SAMSN1, CLEC4E and S100A12. The logistic regression model used to combine the gene expression in a STEMI vs healthy donors score showed an AUC of 0.95. The same five differentially expressed genes were externally validated using platelet gene expression data from patients with coronary atherosclerosis but without thrombosis. Platelet gene expression profile highlights five genes able to identify STEMI patients and to discriminate them in the background of atherosclerosis. Consequently, early signals of an imminent acute myocardial infarction are likely to be found by platelet gene expression profiling before the infarction occurs

    Heteropolymeric Triplex-Based Genomic Assay® to Detect Pathogens or Single-Nucleotide Polymorphisms in Human Genomic Samples

    Get PDF
    Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are “canonical triplexes”. Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays

    Antisense inhibition of methylenetetrahydrofolate reductase reduces survival of methionine-dependent tumour lines

    Get PDF
    Transformed cells have been documented to be methionine-dependent, suggesting that inhibition of methionine synthesis might be useful for cancer therapy. Methylenetetrahydrofolate reductase synthesises 5-methyltetrahydrofolate, the methyl donor utilised in methionine synthesis from homocysteine by vitamin B12-dependent methionine synthase. We hypothesised that methylenetetrahydrofolate reductase inhibition would affect cell viability through decreased methionine synthesis. Using medium lacking methionine, but containing homocysteine and vitamin B12 (M-H+), we found that nontransformed human fibroblasts could maintain growth. In contrast, four transformed cell lines (one colon carcinoma, two neuroblastoma and one breast carcinoma) increased proliferation only slightly in the M-H+ medium. To downregulate methylenetetrahydrofolate reductase expression, two phosphorothioate antisense oligonucleotides, EX5 and 677T, were used to target methylenetetrahydrofolate reductase in the colon carcinoma line SW620; 400 nM of each antisense oligonucleotide decreased cell survival by approximately 80% (P<0.01) and 70% (P<0.0001), respectively, compared to cell survival after the respective control mismatched oligonucleotide. Western blotting and enzyme assays confirmed that methylenetetrahydrofolate reductase expression was decreased. Two neuroblastoma and two breast carcinoma lines also demonstrated decreased survival following EX5 treatment whereas nontransformed human fibroblasts were not affected. This study suggests that methylenetetrahydrofolate reductase may be required for tumour cell survival and that methylenetetrahydrofolate reductase inhibition should be considered for anti-tumour therapy

    Polymorphisms in MTHFR, MS and CBS Genes and Homocysteine Levels in a Pakistani Population

    Get PDF
    Background: Hyperhomocysteinemia (\u3e15 mol/L) is highly prevalent in South Asian populations including Pakistan. In order to investigate the genetic determinants of this condition, we studied 6 polymorphisms in genes of 3 enzymes--methylenetetrahydrofolate reductase (MTHFR, C677T, A1298C), methionine synthase (MS, A2756G), cystathionine-beta-synthase (CBS, T833C/844ins68, G919A) involved in homocysteine metabolism and investigated their interactions with nutritional and environmental factors in a Pakistani population. Methodology/Principal Findings: In a cross-sectional survey, 872 healthy adults (355 males and 517 females, age 18-60 years) were recruited from a low-income urban population in Karachi. Fasting venous blood was obtained and assessed for plasma/serum homocysteine, folate, vitamin B12, pyridoxal phosphate and blood lead. DNA was isolated and genotyping was performed by PCR-RFLP (restriction-fragment-length-polymorphism) based assays. The average changes in homocysteine levels for MTHFR 677CT and TT genotypes were positive [beta(SE beta), 2.01(0.63) and 16.19(1.8) mol/L, respectively]. Contrary to MTHFR C677T polymorphism, the average changes in plasma homocysteine levels for MS 2756AG and GG variants were negative [beta(SE beta), -0.56(0.58) and -0.83(0.99) mol/L, respectively]. The average change occurring for CBS 844ins68 heterozygous genotype (ancestral/insertion) was -1.88(0.81) mol/L. The combined effect of MTHFR C677T, MS A2756G and CBS 844ins68 genotypes for plasma homocysteine levels was additive (p valu
    corecore