51 research outputs found

    Synthetic precursor to make alkali activated cements

    Get PDF
    Please click Additional Files below to see the full abstract

    Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste

    Full text link
    The properties and microstructure of alkali-activated (AA) vitreous calcium aluminosilicate (VCAS) are presented in this paper. VCAS is manufactured from a by-product of the glass fiber industry and has been activated using NaOH and KOH solutions. The microstructure and mechanical properties of AA VCAS pastes and mortars are reported. The results show that depending on the type and concentration of hydroxide solution used, mortar samples with compressive strengths up to 77 MPa can be formed after curing for three days at 65 °C. The research demonstrates the potential of VCAS to produce AA cements and the importance of alkali type and concentration in optimizing properties and microstructure.Mitsuuchi Tashima, M.; Soriano Martinez, L.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Cheeseman, CR.; Paya Bernabeu, JJ. (2012). Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials. 1(3):83-93. doi:10.1080/21650373.2012.742610S839313Mahasenan N, Smith S, Humphreys K. The cement industry and global climate change: current and potential future cement industry CO2emissions. Greenhouse Gas Control Technologies – 6th International Conference. Oxford: Pergamon; 2003. p. 995–1000.Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production—present and future. Cement and Concrete Research, 41(7), 642-650. doi:10.1016/j.cemconres.2011.03.019WBCSD – World Business Council for Sustainable Development. Cement industry energy and CO2performance – Getting numbers right. Edited by WBCSD, Geneva-Switzerland (ISBN 978-3-940388-48-3). 2009.Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2006). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933. doi:10.1007/s10853-006-0637-zFernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 35(6), 1204-1209. doi:10.1016/j.cemconres.2004.08.021Hossain, A. B., Shirazi, S. A., Persun, J., & Neithalath, N. (2008). Properties of Concrete Containing Vitreous Calcium Aluminosilicate Pozzolan. Transportation Research Record: Journal of the Transportation Research Board, 2070(1), 32-38. doi:10.3141/2070-05Neithalath, N., Persun, J., & Hossain, A. (2009). Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cement and Concrete Research, 39(6), 473-481. doi:10.1016/j.cemconres.2009.03.006Tashima MM, Soriano L, Borrachero MV, Monzó J, Payá J. Effect of curing time on the microstructure and mechanical strength development of alkali activated nbinders based on vitreous calcium aluminosilicate (VCAS). Bull. Mater. Sci. in press.Hemmings RT, Nelson RD, Graves PL, Cornelius BJ. White pozzolan composition and blended cements containing same. Patent US6776838. 2004.Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2005). Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chemistry of Materials, 17(12), 3075-3085. doi:10.1021/cm050230iCriado, M., Fernández-Jiménez, A., de la Torre, A. G., Aranda, M. A. G., & Palomo, A. (2007). An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research, 37(5), 671-679. doi:10.1016/j.cemconres.2007.01.013Rees, C. A., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation. Langmuir, 23(17), 9076-9082. doi:10.1021/la701185gLee, W. K. W., & van Deventer, J. S. J. (2003). Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates. Langmuir, 19(21), 8726-8734. doi:10.1021/la026127eGarcía-Lodeiro, I., Fernández-Jiménez, A., Blanco, M. T., & Palomo, A. (2007). FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. Journal of Sol-Gel Science and Technology, 45(1), 63-72. doi:10.1007/s10971-007-1643-6Barbosa VFF. Sintese e caracterização de polissialatos (Synthesis and characterization of polysialates) [PhD thesis] (in Portuguese). Instituto Militar de Engenharia. Rio de Janeiro - Brazil. 190 p. 1999.Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., Gordillo, M., & Provis, J. L. (2011). Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 46(16), 5477-5486. doi:10.1007/s10853-011-5490-zBoccaccini, A. R., Bücker, M., Bossert, J., & Marszalek, K. (1997). Glass matrix composites from coal flyash and waste glass. Waste Management, 17(1), 39-45. doi:10.1016/s0956-053x(97)00035-4Kourti, I., Rani, D. A., Deegan, D., Boccaccini, A. R., & Cheeseman, C. R. (2010). Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. Journal of Hazardous Materials, 176(1-3), 704-709. doi:10.1016/j.jhazmat.2009.11.089Lampris, C., Lupo, R., & Cheeseman, C. R. (2009). Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Management, 29(1), 368-373. doi:10.1016/j.wasman.2008.04.007Wu, H.-C., & Sun, P. (2007). New building materials from fly ash-based lightweight inorganic polymer. Construction and Building Materials, 21(1), 211-217. doi:10.1016/j.conbuildmat.2005.06.052Kourti, I., Amutha Rani, D., Boccaccini, A. R., & Cheeseman, C. R. (2011). Geopolymers from DC Plasma–Treated Air Pollution Control Residues, Metakaolin, and Granulated Blast Furnace Slag. Journal of Materials in Civil Engineering, 23(6), 735-740. doi:10.1061/(asce)mt.1943-5533.000017

    Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    Get PDF
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature

    Examination of alkali-activated material nanostructure during thermal treatment

    Get PDF
    The key nanostructural changes occurring in a series of alkali-activated materials (AAM) based on blends of slag and fly ash precursors during exposure to temperatures up to 1000 °C are investigated. The main reaction product in each AAM is a crosslinked sodium- and aluminium-substituted calcium silicate hydrate (C-(N)-A-S-H)-type gel. Increased alkali content promotes the formation of an additional sodium aluminosilicate hydrate (N-A-S-(H)) gel reaction product due to the structural limitations on Al substitution within the C-(N)-A-S-H gel. Heating each AAM to 1000 °C results in the crystallisation of the disordered gels and formation of sodalite, nepheline and wollastonite. Increased formation of N-A-S-(H) reduces binder structural water content after thermal treatment and correlates closely with previous observations of improved strength retention and reduced microcracking in these AAM after heating to 1000 °C. This provides new insight into thermally induced changes to gel atomic structure and thermal durability of C-(N)-A-S-H/N-A-S-H gel blends which are fundamental for the development of new fire-resistant construction materials

    Strontium in phosphate-modified calcium aluminate cement

    No full text
    Cements have been used to encapsulate low and intermediate level radioactive wastes. Here, phosphate-modified calcium aluminate (CAP) cement is explored as an encapsulant for strontium radioanuclide-containing wastes. Electron microscopy indicates strontium chloride, used in place of strontium radionuclides, increases porosity in CAP possibly due to increased viscosity of CAP cement during mixing. X-ray diffraction analysis detects formation of halite phase suggesting strontium chloride reacts with cement to form sodium chloride not usually detected in CAP systems as well as formation of an amorphous phase in CAP cement when thermally treated at 90°C
    corecore