679 research outputs found

    Human-centric light sensing and estimation from RGBD images: the invisible light switch

    Get PDF
    Lighting design in indoor environments is of primary importance for at least two reasons: 1) people should perceive an adequate light; 2) an effective lighting design means consistent energy saving. We present the Invisible Light Switch (ILS) to address both aspects. ILS dynamically adjusts the room illumination level to save energy while maintaining constant the light level perception of the users. So the energy saving is invisible to them. Our proposed ILS leverages a radiosity model to estimate the light level which is perceived by a person within an indoor environment, taking into account the person position and her/his viewing frustum (head pose). ILS may therefore dim those luminaires, which are not seen by the user, resulting in an effective energy saving, especially in large open offices (where light may otherwise be ON everywhere for a single person). To quantify the system performance, we have collected a new dataset where people wear luxmeter devices while working in office rooms. The luxmeters measure the amount of light (in Lux) reaching the people gaze, which we consider a proxy to their illumination level perception. Our initial results are promising: in a room with 8 LED luminaires, the energy consumption in a day may be reduced from 18585 to 6206 watts with ILS (currently needing 1560 watts for operations). While doing so, the drop in perceived lighting decreases by just 200 lux, a value considered negligible when the original illumination level is above 1200 lux, as is normally the case in offices

    High power diode laser surface glazing of concrete

    Get PDF
    This present work describes the utilisation of the relatively novel high power diode laser (HPDL) to generate a surface glaze on the ordinary Portland cement (OPC) surface of concrete. The value of such an investigation would be to facilitate the hitherto impossible task of generating a durable and long-lasting surface seal on the concrete, thereby extending the life and applications base of the concrete. The basic process phenomena are investigated and the laser effects in terms of glaze morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O2 and Ar, during laser processing. HPDL glazing of OPC was successfully demonstrated with power densities as low as 750 W cm-2 and at scanning rates up to 480 mm min-1. The work showed that the generation of the surface glaze resulted in improved mechanical and chemical properties over the untreated OPC surface of concrete. Both untreated and HPDL glazed OPC were tested for pull-off strength, rupture strength, water absorption, wear resistance and corrosion resistance. The OPC laser glaze exhibited clear improvements in wear, water sorptivity, and resistance (up to 80% concentration) to nitric acid, sodium hydroxide and detergent. Life assessment testing revealed that the OPC laser glaze had an increase in actual wear life of 1.3 to 14.8 times over the untreated OPC surface of concrete, depending upon the corrosive environment

    Theory of Transition Temperature of Magnetic Double Perovskites

    Full text link
    We formulate a theory of double perovskite coumpounds such as Sr2_2FeReO6_6 and Sr2_2FeMoO6_6 which have attracted recent attention for their possible uses as spin valves and sources of spin polarized electrons. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c. We find that TcT_c is determined by a subtle interplay between carrier density and the Fe-Mo/Re site energy difference, and that the non-Fe same-sublattice hopping acts to reduce TcT_c. Our results suggest that presently existing materials do not optimize TcT_c

    First-principles study on the origin of large thermopower in hole-doped LaRhO3 and CuRhO2

    Full text link
    Based on first-principles calculations, we study the origin of the large thermopower in Ni-doped LaRhO3 and Mg-doped CuRhO2. We calculate the band structure and construct the maximally localized Wannier functions from which a tight binding Hamiltonian is obtained. The Seebeck coefficient is calculated within the Boltzmann's equation approach using this effective Hamiltonian. For LaRhO3, we find that the Seebeck coefficient remains nearly constant within a large hole concentration range, which is consistent with the experimental observation. For CuRhO2, the overall temperature dependence of the calculated Seebeck coefficient is in excellent agreement with the experiment. The origin of the large thermopower is discussed.Comment: 7 pages, to be published J. Phys.: Cond. Matt., Proc. QSD 200

    Parental evaluation of a telemonitoring service for children with Type 1 Diabetes

    Get PDF
    Introduction In the past years, we developed a telemonitoring service for young patients affected by Type 1 Diabetes. That service provides data to the clinical staff and offers an important tool to the parents, that are able to oversee in real time their children. The aim of this work was to analyze the parents' perceived usefulness of the service. Methods The service was tested by the parents of 31 children enrolled in a seven-day clinical trial during a summer camp. To study the parents' perception we proposed and analyzed two questionnaires. A baseline questionnaire focused on the daily management and implications of their children's diabetes, while a post-study one measured the perceived benefits of telemonitoring. Questionnaires also included free text comment spaces. Results Analysis of the baseline questionnaires underlined the parents' suffering and fatigue: 51% of total responses showed a negative tendency and the mean value of the perceived quality of life was 64.13 in a 0-100 scale. In the post-study questionnaires about half of the parents believed in a possible improvement adopting telemonitoring. Moreover, the foreseen improvement in quality of life was significant, increasing from 64.13 to 78.39 ( p-value\u2009=\u20090.0001). The analysis of free text comments highlighted an improvement in mood, and parents' commitment was also proved by their willingness to pay for the service (median\u2009=\u2009200\u2009euro/year). Discussion A high number of parents appreciated the telemonitoring service and were confident that it could improve communication with physicians as well as the family's own peace of mind

    Analysis of Collectivism and Egoism Phenomena within the Context of Social Welfare

    Full text link
    Comparative benefits provided by the basic social strategies including collectivism and egoism are investigated within the framework of democratic decision-making. In particular, we study the mechanism of growing "snowball" of cooperation.Comment: 12 pages, 5 figures. Translated from Russian. Original Russian Text published in Problemy Upravleniya, 2008, No. 4, pp. 30-3

    MiR-16-1* and miR-16-2* possess strong tumor suppressive and anti-metastatic properties in osteosarcoma

    Get PDF
    Osteosarcoma (OS) is an aggressive malignancy affecting mostly children and adolescents. MicroRNAs (miRNAs) play important roles in OS development and progression. Here we found that miR-16-1* and miR-16-2* “passenger” strands as well as the “lead” miR-16 strand possess strong tumor suppressive functions in human OS. We report different although strongly overlapping functions for miR-16-1* and miR-16-2* in OS cells. Ectopic expression of these miRNAs affected primary tumor growth, metastasis seeding, and chemoresistance and invasiveness of human OS cells. Loss-of-function experiments verified tumor suppressive functions of these miRNAs at endogenous levels of expression. Using RNA immunoprecipitation (RIP) assays, we identify direct targets of miR-16-1* and miR-16-2* in OS cells. Furthermore, validation experiments identified FGFR2 as a direct target for miR-16-1* and miR-16-2*. Overall, our findings underscore the importance of passenger strand miRNAs in osteosarcomagenesis

    Effect of Different Percentage of Camelina sativa Cake in Laying Hens Diet: Performance, Welfare, and Eggshell Quality

    Get PDF
    Although camelina [Camelina sativa (L.) Crantz] is a good source of protein, antioxidants, and polyunsaturated fatty acids, its antinutritional compounds limit its use in animal feeding. The aim of this study was to verify the effect of feeding laying hens with up to 20% of camelina cake from a breeding line containing a low level of glucosinolates on performance, welfare, and eggshell quality. Two hundred and forty Hy-Line\uae hens from 18 to 51 weeks of age were divided into three treatments: control (C), camelina cake 10% (CAM10), and camelina cake 20% (CAM20). Egg number was recorded daily, while egg weight, feed consumption, and mortality were recorded weekly. At 24 and 43 weeks of hen age, shell resistance to fracture was measured. Our results demonstrate no detrimental effects for CAM10 and CAM20 diets on feed intake, growth performance, and welfare. No difference in egg production was detected among the diets. The significant (p < 0.05) interaction of diet and age factors suggest that the addition of camelina cake, up to 20%, likely protects the eggshell of older hens. Our findings confirm that camelina cake might be an alternative and sustainable protein source for hens

    Long-Term Prognostic Impact of Right Ventricular Dysfunction in Patients with COVID-19

    Get PDF
    The characteristics and clinical course of hospitalized patients with coronavirus disease 2019 (COVID-19) have been widely described, while long-term data are still poor. The aim of this study was to evaluate the long-term clinical outcome and its association with right ventricular (RV) dysfunction in hospitalized patients with COVID-19. This was a prospective multicenter study of consecutive COVID-19 patients hospitalized at seven Italian Hospitals from 28 February to 20 April 2020. The study population was divided into two groups according to echocardiographic evidence of RV dysfunction. The primary study outcome was 1-year mortality. The propensity score matching was performed to balance for potential baseline confounders. The study population consisted of 224 patients (mean age 69 \ub1 14, male sex 62%); RV dysfunction was diagnosed in 63 cases (28%). Patients with RV dysfunction were older (75 vs. 67 years, p < 0.001), had higher prevenance of coronary artery disease (27% vs. 11%, p = 0.003), and lower left ventricular ejection fraction (50% vs. 55%, p <0.001). The rate of 1-year mortality (67% vs. 28%; p 64 0.001) was significantly higher in patients with RV dysfunction compared with patients without. After propensity score matching, patients with RV dysfunction showed a worse long-term survival (62% vs. 29%, p <0.001). The multivariable Cox regression model showed an independent association of RV dysfunction with 1-year mortality. RV dysfunction is a relatively common finding in hospitalized COVID-19 patients, and it is independently associated with an increased risk of 1-year mortality

    From rapid visual survey to multi-hazard risk prioritisation and numerical fragility of school buildings

    Get PDF
    Regional seismic risk assessment is paramount in earthquake-prone areas, for instance, to define and implement prioritisation schemes for earthquake risk reduction. As part of the Indonesia School Programme to Increase Resilience (INSPIRE), this paper proposes an ad hoc rapid-visual-survey form, allowing one to (1) calculate the newly proposed INSPIRE seismic risk prioritisation index, which is an empirical proxy for the relative seismic risk of reinforced concrete (RC) buildings within a given building portfolio; (2) calculate the Papathoma Tsunami Vulnerability Assessment (PTVA) index, in any of its variations; (3) define one or more archetype buildings representative of the analysed portfolio; (4) derive detailed numerical models of the archetype buildings, provided that the simulated design is used to cross-check the model assumptions. The proposed INSPIRE index combines a baseline score, calibrated based on fragility curves, and a performance modifier, calibrated through the analytic hierarchy process (AHP) to minimise subjectivity. An attempt to define a multi-hazard prioritisation scheme is proposed, combining the INSPIRE and PTVA indices. Such a multi-level framework is implemented for 85 RC school buildings in Banda Aceh, Indonesia, the most affected city by the 2004 Indian Ocean earthquake–tsunami sequence. As part of the proposed framework, two archetype buildings representative of the entire portfolio are defined based on the collected data. Their seismic performance is analysed by means of non-linear static analyses, using both the analytical simple lateral mechanism analysis (SLaMA) method and numerical finite-element pushover analyses to investigate the expected plastic mechanisms and derive displacement/drift thresholds to define appropriate damage states. Finally, non-linear dynamic analyses are performed to derive fragility curves for the archetype buildings. This paper demonstrates the effectiveness of the INSPIRE data collection form and proposed index in providing a rational method to derive seismic risk prioritisation schemes and in allowing the definition of archetype buildings for more detailed evaluations/analyses
    • 

    corecore