33 research outputs found

    Bub1 as a recruitment platform for Spindle Assembly Checkpoint components

    Get PDF
    Motivation: The Spindle Assembly Checkpoint (SAC) is a safeguard mechanism conserved in all the eukaryotes that ensures the correct chromosome segregation in mitosis by preventing the premature mitotic exit in condition of unattached kinetochores. SAC defects lead to chromosome mis-segregation provoking aneuploidies that has been widely associated with cancer. Kinase Bub1 is a key player in SAC function because it maintains a proper centromeric cohesion and serves as a platform for other SAC components such as Mad1, Mad2 and Mad3. In this study, we are characterizing a bub1 mutant allele which exhibits an impaired SAC function. The phenotype shown by this mutant has not been previously described. This mutant can provide new insights about the Bub1-dependent recruitment of SAC components to the kinetochores and the mechanism of mitosis arrest.Methods: We made use of live imaging techniques to study SAC function by using GFP-tagged alleles of the main SAC components (like Mad1, Mad2 and Mad3), comparing the wild type background versus the bub1 mutant allele. Furthermore, we have used a cold sensitive tubulin mutant that allows us to test SAC activity; in response to microtubules damage induced by this mutant, cells activate the SAC and arrest in metaphase. We have also tested Bub1 protein levels in a wild-type and in the Bub1-mutant by Western Blot. Finally, we are performing a two-hybrid screening using a S. pombe library-strain to detect differences in the interactome of the Bub1-mutant compared with the wild-type. Results: We have demonstrated that in the Bub1-mutant background, Mad1 correctly localizes at the kinetochores meanwhile Mad2 does not. Bub1 protein levels turned out to be quite similar in both strain. Additionally, we have observed that the SAC defects notice in the Bub1-mutant in the cold sensitive background partially phenocopies the one seen in the Bub1-deleted cells.Conclusions: Our Bub1-mutant is unable to maintain a proper metaphase block in the cold-sensitive tubulin background and exhibit a SAC failure. We are working in a model where Bub1 could be regulating SAC activity by promoting Mad2 recruitment to kinetochores

    RNA metabolism is the primary target of formamide in vivo

    Get PDF
    The synthesis, processing and function of coding and non-coding RNA molecules and their interacting proteins has been the focus of a great deal of research that has boosted our understanding of key molecular pathways that underlie higher order events such as cell cycle control, development, innate immune response and the occurrence of genetic diseases. In this study, we have found that formamide preferentially weakens RNA related processes in vivo. Using a non-essential Schizosaccharomyces pombe gene deletion collection, we identify deleted loci that make cells sensitive to formamide. Sensitive deletions are significantly enriched in genes involved in RNA metabolism. Accordingly, we find that previously known temperature-sensitive splicing mutants become lethal in the presence of the drug under permissive temperature. Furthermore, in a wild type background, splicing efficiency is decreased and R-loop formation is increased in the presence of formamide. In addition, we have also isolated 35 formamide-sensitive mutants, many of which display remarkable morphology and cell cycle defects potentially unveiling new players in the regulation of these processes. We conclude that formamide preferentially targets RNA related processes in vivo, probably by relaxing RNA secondary structures and/or RNA-protein interactions, and can be used as an effective tool to characterize these processes

    Absence of repellents in Ustilago maydis induces genes encoding small secreted proteins

    Get PDF
    The rep1 gene of the maize pathogen Ustilago maydis encodes a pre-pro-protein that is processed in the secretory pathway into 11 peptides. These so-called repellents form amphipathic amyloid fibrils at the surface of aerial hyphae. A SG200 strain in which the rep1 gene is inactivated (∆rep1 strain) is affected in aerial hyphae formation. We here assessed changes in global gene expression as a consequence of the inactivation of the rep1 gene. Microarray analysis revealed that only 31 genes in the ∆rep1 SG200 strain had a fold change in expression of ≥2. Twenty-two of these genes were up-regulated and half of them encode small secreted proteins (SSPs) with unknown functions. Seven of the SSP genes and two other genes that are over-expressed in the ∆rep1 SG200 strain encode proteins that can be classified as secreted cysteine-rich proteins (SCRPs). Interestingly, most of the SCRPs are predicted to form amyloids. The SCRP gene um00792 showed the highest up-regulation in the ∆rep1 strain. Using GFP as a reporter, it was shown that this gene is over-expressed in the layer of hyphae at the medium-air interface. Taken together, it is concluded that inactivation of rep1 hardly affects the expression profile of U. maydis, despite the fact that the mutant strain has a strong reduced ability to form aerial hyphae

    The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen

    Get PDF
    A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens

    MoSfl1 Is Important for Virulence and Heat Tolerance in Magnaporthe oryzae

    Get PDF
    The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae

    Seguimiento de las guías españolas para el manejo del asma por el médico de atención primaria: un estudio observacional ambispectivo

    Get PDF
    Objetivo Evaluar el grado de seguimiento de las recomendaciones de las versiones de la Guía española para el manejo del asma (GEMA 2009 y 2015) y su repercusión en el control de la enfermedad. Material y métodos Estudio observacional y ambispectivo realizado entre septiembre del 2015 y abril del 2016, en el que participaron 314 médicos de atención primaria y 2.864 pacientes. Resultados Utilizando datos retrospectivos, 81 de los 314 médicos (25, 8% [IC del 95%, 21, 3 a 30, 9]) comunicaron seguir las recomendaciones de la GEMA 2009. Al inicio del estudio, 88 de los 314 médicos (28, 0% [IC del 95%, 23, 4 a 33, 2]) seguían las recomendaciones de la GEMA 2015. El tener un asma mal controlada (OR 0, 19, IC del 95%, 0, 13 a 0, 28) y presentar un asma persistente grave al inicio del estudio (OR 0, 20, IC del 95%, 0, 12 a 0, 34) se asociaron negativamente con tener un asma bien controlada al final del seguimiento. Por el contrario, el seguimiento de las recomendaciones de la GEMA 2015 se asoció de manera positiva con una mayor posibilidad de que el paciente tuviera un asma bien controlada al final del periodo de seguimiento (OR 1, 70, IC del 95%, 1, 40 a 2, 06). Conclusiones El escaso seguimiento de las guías clínicas para el manejo del asma constituye un problema común entre los médicos de atención primaria. Un seguimiento de estas guías se asocia con un control mejor del asma. Existe la necesidad de actuaciones que puedan mejorar el seguimiento por parte de los médicos de atención primaria de las guías para el manejo del asma. Objective: To assess the degree of compliance with the recommendations of the 2009 and 2015 versions of the Spanish guidelines for managing asthma (Guía Española para el Manejo del Asma [GEMA]) and the effect of this compliance on controlling the disease. Material and methods: We conducted an observational ambispective study between September 2015 and April 2016 in which 314 primary care physicians and 2864 patients participated. Results: Using retrospective data, we found that 81 of the 314 physicians (25.8%; 95% CI 21.3–30.9) stated that they complied with the GEMA2009 recommendations. At the start of the study, 88 of the 314 physicians (28.0%; 95% CI 23.4–33.2) complied with the GEMA2015 recommendations. Poorly controlled asthma (OR, 0.19; 95% CI 0.13–0.28) and persistent severe asthma at the start of the study (OR, 0.20; 95% CI 0.12–0.34) were negatively associated with having well-controlled asthma by the end of the follow-up. In contrast, compliance with the GEMA2015 recommendations was positively associated with a greater likelihood that the patient would have well-controlled asthma by the end of the follow-up (OR, 1.70; 95% CI 1.40–2.06). Conclusions: Low compliance with the clinical guidelines for managing asthma is a common problem among primary care physicians. Compliance with these guidelines is associated with better asthma control. Actions need to be taken to improve primary care physician compliance with the asthma management guidelines

    Cortical regulation of cell size by a sizer cdr2p

    No full text
    10.7554/eLife.02040eLife20143e0204
    corecore