2,430 research outputs found

    Proposal for a Precision Measurement of |Vub|

    Full text link
    A new method for a precision measurement of the CKM matrix element |Vub| is discussed, which combines good theoretical control with high efficiency and a powerful discrimination against charm background. The resulting combined theoretical uncertainty on |Vub| is estimated to be 10%.Comment: 4 pages, 2 figures, RevTe

    Lifetimes of b-flavoured hadrons

    Get PDF
    I discuss the heavy quark expansion for the inclusive widths of heavy-light hadrons, which predicts quite well the experimental ratios of B_q meson lifetimes. As for Λb\Lambda_b, current determinations of O(mb−3){\cal O}(m_b^{-3}) contribution to τ(Λb)\tau(\Lambda_b) do not allow to explain the small measured value of τ(Λb)/τ(Bd)\tau(\Lambda_b)/\tau(B_d). As a final topic, I discuss the implications of the measurement of the B_c lifetime.Comment: LaTex, 4 pages, 1 figure. Talk given at the "U.K. Phenomenology Workshop on Heavy Flavours and CP violation" Durham, 17-22 Sep. 2000 (Mixing and Lifetimes Working Group

    Entanglement Content of Quasiparticle Excitations

    Get PDF
    We investigate the quantum entanglement content of quasiparticle excitations in extended many-body systems. We show that such excitations give an additive contribution to the bipartite von Neumann and Rényi entanglement entropies that takes a simple, universal form. It is largely independent of the momenta and masses of the excitations and of the geometry, dimension, and connectedness of the entanglement region. The result has a natural quantum information theoretic interpretation as the entanglement of a state where each quasiparticle is associated with two qubits representing their presence within and without the entanglement region, taking into account quantum (in)distinguishability. This applies to any excited state composed of finite numbers of quasiparticles with finite de Broglie wavelengths or finite intrinsic correlation length. This includes particle excitations in massive quantum field theory and gapped lattice systems, and certain highly excited states in conformal field theory and gapless models. We derive this result analytically in one-dimensional massive bosonic and fermionic free field theories and for simple setups in higher dimensions. We provide numerical evidence for the harmonic chain and the two-dimensional harmonic lattice in all regimes where the conditions above apply. Finally, we provide supporting calculations for integrable spin chain models and other interacting cases without particle production. Our results point to new possibilities for creating entangled states using many-body quantum systems

    Semileptonic B Decays and Determination of |Vub|

    Full text link
    Semileptonic decays of the B mesons provide an excellent probe for the weak and strong interactions of the bottom quark. The large data samples collected at the B Factories have pushed the experimental studies of the semileptonic B decays to a new height and stimulated significant theoretical developments. I review recent progresses in this fast-evolving field, with an emphasis on the determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vub|.Comment: 16 pages, 4 figures, accepted by Mod. Phys. Lett.

    Entanglement evolution after connecting finite to infinite quantum chains

    Full text link
    We study zero-temperature XX chains and transverse Ising chains and join an initially separate finite piece on one or on both sides to an infinite remainder. In both critical and non-critical systems we find a typical increase of the entanglement entropy after the quench, followed by a slow decay towards the value of the homogeneous chain. In the critical case, the predictions of conformal field theory are verified for the first phase of the evolution, while at late times a step structure can be observed.Comment: 15 pages, 11 figure

    Aspects Of Heavy Quark Theory

    Full text link
    Recent achievements in the heavy quark theory are critically reviewed. The emphasis is put on those aspects which either did not attract enough attention or cause heated debates in the current literature. Among other topics we discuss (i) basic parameters of the heavy quark theory; (ii) a class of exact QCD inequalities; (iii) new heavy quark sum rules; (iv) virial theorem; (v) applications (|V_cb| from the total semileptonic width and from the B->D* transition at zero recoil). In some instances new derivations of the previously known results are given, or new aspects addressed. In particular, we dwell on the exact QCD inequalities. Furthermore, a toy model is considered that may shed light on the controversy regarding the value of the kinetic energy of heavy quarks obtained by different methods.Comment: 67 pages, 6 Figures; plain LaTeX. Changes: Some equations in Sect.4 related to spin-nonsinglet sum rules are corrected. The references are updated

    MEMS-based Micro-scale Wind Turbines as Energy Harvesters of the Convective Airflows in Microelectronic Circuits

    Get PDF
    As an alternative to conventional batteries and other energy scavenging techniques, this paper introduces the idea of using micro-turbines to extract energy from wind forces at the microscale level and to supply power to battery-less microsystems. Fundamental research efforts on the design, fabrication, and test of micro-turbines with blade lengths of just 160 μm are presented in this paper along with analytical models and preliminary experimental results. The proof-of-concept prototypes presented herein were fabricated using a standard polysilicon surface micro-machining silicon technology (PolyMUMPs) and could effectively transform the kinetic energy of the available wind into a torque that might drive an electric generator or directly power supply a micro-mechanical system. Since conventional batteries do not scale-down well to the microscale, wind micro-turbines have the potential for becoming a practical alternative power source for microsystems, as well as for extending the operating range of devices running on batteries

    Entanglement Content of Quantum Particle Excitations III. Graph Partition Functions

    Get PDF
    We consider two measures of entanglement, the logarithmic negativity and the entanglement entropy, between regions of space in excited states of many-body systems formed by a finite number of particle excitations. In parts I and II of the current series of papers, it has been shown in one-dimensional free-particle models that, in the limit of large system's and regions' sizes, the contribution from the particles is given by the entanglement of natural qubit states, representing the uniform distribution of particles in space. We show that the replica logarithmic negativity and R\'enyi entanglement entropy of such qubit states are equal to the partition functions of certain graphs, that encode the connectivity of the manifold induced by permutation twist fields. Using this new connection to graph theory, we provide a general proof, in the massive free boson model, that the qubit result holds in any dimensionality, and for any regions' shapes and connectivity. The proof is based on clustering and the permutation-twist exchange relations, and is potentially generalisable to other situations, such as lattice models, particle and hole excitations above generalised Gibbs ensembles, and interacting integrable models
    • …
    corecore