34 research outputs found

    Effect of physical activity during pregnancy on mode of delivery.

    No full text
    OBJECTIVE: The purpose of this study was to evaluate the effect of structured physical exercise programs during pregnancy on the course of labor and delivery. STUDY DESIGN: We conducted a systematic review and metaanalysis using the following data sources: Medline and The Cochrane Library. In our study, we used randomized controlled trials (RCT) that evaluated the effects of exercise programs during pregnancy on labor and delivery. The results are summarized as relative risks. RESULTS: In the 16 RCTs that were included there were 3359 women. Women in exercise groups had a significantly lower risk of cesarean delivery (relative risk, 0.85; 95% confidence interval [CI], 0.73-0.99). Birthweight was not significantly reduced in exercise groups. The risk of instrumental delivery was similar among groups (relative risk, 1.00; 95% CI, 0.82-1.22). Data on Apgar score, episiotomy, epidural anesthesia, perineal tear, length of labor, and induction of labor were insufficient to draw conclusions. With the use of data from 11 studies (1668 women), our analysis showed that women in the exercise groups gained significantly less weight than women in control groups (mean difference, -1.13 kg; 95% CI, -1.49 to -0.78). CONCLUSION: Structured physical exercise during pregnancy reduces the risk of cesarean delivery. This is an important finding to convince women to be active during their pregnancy and should lead the physician to recommend physical exercise to pregnant women, when this is not contraindicated

    The DAMPE silicon–tungsten tracker

    No full text
    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5GeV-10TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7m2. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN
    corecore