21 research outputs found

    RNA-Seq de Novo Assembly and Differential Transcriptome Analysis of Chaga (Inonotus obliquus) Cultured with Different Betulin Sources and the Regulation of Genes Involved in Terpenoid Biosynthesis

    Get PDF
    Chaga (Inonotus obliquus) is a medicinal fungus used in traditional medicine of Native American and North Eurasian cultures. Several studies have demonstrated the medicinal properties of chaga's bioactive molecules. For example, several terpenoids (e.g., betulin, betulinic acid and inotodiol) isolated from I. obliquus cells have proven effectiveness in treating different types of tumor cells. However, the molecular mechanisms and regulation underlying the biosynthesis of chaga terpenoids remain unknown. In this study, we report on the optimization of growing conditions for cultured I. obliquus in presence of different betulin sources (e.g., betulin or white birch bark). It was found that better results were obtained for a liquid culture pH 6.2 at 28 °C. In addition, a de novo assembly and characterization of I. obliquus transcriptome in these growth conditions using Illumina technology was performed. A total of 219,288,500 clean reads were generated, allowing for the identification of 20,072 transcripts of I. obliquus including transcripts involved in terpenoid biosynthesis. The differential expression of these genes was confirmed by quantitative-PCR. This study provides new insights on the molecular mechanisms and regulation of I. obliquus terpenoid production. It also contributes useful molecular resources for gene prediction or the development of biotechnologies for the alternative production of terpenoids

    Diatoms biotechnology: various industrial applications for a greener tomorrow

    Get PDF
    The benefits of the complex microscopic and industrially important group of microalgae such as diatoms is not hidden and have lately surprised the scientific community with their industrial potential. The ability to survive in harsh conditions and the presence of different pore structures and defined cell walls have made diatoms ideal cell machinery to produce a variety of industrial products. The prospect of using a diatom cell for industrial application has increased significantly in synch with the advances in microscopy, metabarcoding, analytical and genetic tools. Furthermore, it is well noted that the approach of industry and academia to the use of genetic tools has changed significantly, resulting in a well-defined characterization of various molecular components of diatoms. It is possible to conduct the primary culturing, harvesting, and further downstream processing of diatom culture in a cost-effective manner. Diatoms hold all the qualities to become the alternative raw material for pharmaceutical, nanotechnology, and energy sources leading to a sustainable economy. In this review, an attempt has been made to gather important progress in the different industrial applications of diatoms such as biotechnology, biomedical, nanotechnology, and environmental technologies

    A rust fungal effector binds plant DNA and modulates transcription

    Get PDF
    The basidiomycete Melampsora larici-populina causes poplar rust disease by invading leaf tissues and secreting effector proteins through specialized infection structures known as haustoria. The mechanisms by which rust effectors promote pathogen virulence are poorly understood. The present study characterized Mlp124478, a candidate effector of M. larici-populina. We used the models Arabidopsis thaliana and Nicotiana benthamiana to investigate the function of Mlp124478 in plant cells. We established that Mlp124478 accumulates in the nucleus and nucleolus, however its nucleolar accumulation is not required to promote growth of the oomycete pathogen Hyaloperonospora arabidopsidis. Stable constitutive expression of Mlp124478 in A. thaliana repressed the expression of genes involved in immune responses, and also altered leaf morphology by increasing the waviness of rosette leaves. Chip-PCR experiments showed that Mlp124478 associats'e with the TGA1a-binding DNA sequence. Our results suggest that Mlp124478 exerts a virulence activity and binds the TGA1a promoter to suppress genes induced in response to pathogen infection. © 2018, The Author(s)

    Selection and Validation of Reference Genes for Quantitative Real-Time PCR in Buckwheat (Fagopyrum esculentum) Based on Transcriptome Sequence Data

    Get PDF
    Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species

    Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) endonuclease system is a powerful RNA-guided genome editing tool. CRISPR/Cas9 has been well studied in model plant species for targeted genome editing. However, few studies have been reported on plant species without whole genome sequence information. Currently, no study has been performed to manipulate metabolic pathways using CRISPR/Cas9. In this study, the type II CRISPR/SpCas9 system was used to knock out, via nonhomologous end-joining genome repair, the 4′OMT2 in opium poppy (Papaver somniferum L.), a gene which regulates the biosythesis of benzylisoquinoline alkaloids (BIAs). For sgRNA transcription, viral-based TRV and synthetic binary plasmids were designed and delivered into plant cells with a Cas9 encoding-synthetic vector by Agrobacterium-mediated transformation. InDels formed by CRISPR/Cas9 were detected by sequence analysis. Our results showed that the biosynthesis of BIAs (e.g. morphine, thebaine) was significantly reduced in the transgenic plants suggesting that 4′OMT2 was efficiently knocked-out by our CRISPR-Cas9 genome editing approach. In addition, a novel uncharacterized alkaloid was observed only in CRISPR/Cas9 edited plants. Thus, the applicabilitiy of the CRISPR/Cas9 system was demonstrated for the first time for medicinal aromatic plants by sgRNAs transcribed from both synthetic and viral vectors to regulate BIA metabolism and biosynthesis
    corecore