4,486 research outputs found

    Seeing Double at Neptune's South Pole

    Full text link
    Keck near-infrared images of Neptune from UT 26 July 2007 show that the cloud feature typically observed within a few degrees of Neptune's south pole had split into a pair of bright spots. A careful determination of disk center places the cloud centers at -89.07 +/- 0 .06 and -87.84 +/- 0.06 degrees planetocentric latitude. If modeled as optically thick, perfectly reflecting layers, we find the pair of features to be constrained to the troposphere, at pressures greater than 0.4 bar. By UT 28 July 2007, images with comparable resolution reveal only a single feature near the south pole. The changing morphology of these circumpolar clouds suggests they may form in a region of strong convection surrounding a Neptunian south polar vortex.Comment: 10 pages, 7 figures; accepted to Icaru

    Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions

    Full text link
    We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m Keck telescope, from July 2009. These data have a spatial resolution of 0.035"/pixel and spectral resolution of R~3800 in the H and K broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark- that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ~4 bar in these near-infrared dark regions. Using a set of high signal-to-noise spectra in a cloud-free band from 2-12N, we find that Neptune's cloud opacity is dominated by a compact, optically thick cloud layer with a base near 3 bar and composed of low albedo, forward scattering particles, with an assumed characteristic size of ~1μ\mum. Above this cloud, we require a vertically extended haze of smaller (~0.1 μ\mum) particles, which reaches from the upper troposphere (~0.6 bar) into the stratosphere. The particles in this haze are brighter and more isotropically scattering than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20N to 87S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4_4) profile, and find that our retrievals indicate a strong preference for a low methane relative humidity at pressures where methane is expected to condense. Our preferred solution at most locations is for a methane relative humidity below 10% near the tropopause in addition to methane depletion down to 2.0-2.5 bar. We tentatively identify a trend of lower CH4_4 columns above 2.5 bar at mid- and high-southern latitudes over low latitudes.Comment: Published in Icarus: 15 September 201

    Occultation Light Curves of Io's Hot Spots in 2014

    Get PDF
    We present ground-based observations of Io during Spring 2014, contributing to decadal timelines of individual hot spots' volcanic activity

    Heavy particle concentration in turbulence at dissipative and inertial scales

    Get PDF
    Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the Kolmogorov time scale τη\tau_\eta. In the inertial range, the particle distribution is no longer scale-invariant. It is however shown that deviations from uniformity depend on a rescaled contraction rate, which is different from the local Stokes number given by dimensional analysis. Particle distribution is characterized by voids spanning all scales of the turbulent flow; their signature in the coarse-grained mass probability distribution is an algebraic behavior at small densities.Comment: 4 RevTeX pgs + 4 color Figures included, 1 figure eliminated second part of the paper completely revise

    Thermal Properties of the Icy Galilean Satellites from Millimeter ALMA Observations

    Get PDF
    We present spatially-resolved maps of the leading and trailing hemispheres of Europa, Ganymede, and Callisto from ALMA millimeter wavelength observations

    Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Get PDF
    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars

    A new 1.6-micron map of Titan’s surface

    Get PDF
    We present a new map of Titan's surface obtained in the spectral 'window' at ∼1.6 μm between strong methane absorption. This pre-Cassini view of Titan's surface was created from images obtained using adaptive optics on the W.M. Keck II telescope and is the highest resolution map yet made of Titan's surface. Numerous surface features down to the limits of the spatial resolution (∼200–300 km) are apparent. No features are easily identifiable in terms of their geologic origin, although several are likely craters
    • …
    corecore