42,582 research outputs found
Dynamical scaling in Ising and vector spin glasses
We have studied numerically the dynamics of spin glasses with Ising and XY
symmetry (gauge glass) in space dimensions 2, 3, and 4. The nonequilibrium
spin-glass susceptibility and the nonequilibrium energy per spin of samples of
large size L_b are measured as a function of anneal time t_w after a quench to
temperatures T. The two observables are compared to the equilibrium spin-glass
susceptibility and the equilibrium energy, respectively, measured as functions
of temperature T and system size L for a range of system sizes. For any time
and temperature a nonequilibrium time-dependent length scale L*(t_w,T) can be
defined by comparing equilibrium and nonequilibrium quantities. Our analysis
shows that for all systems studied, an "effective dynamical critical exponent"
parametrization L*(t_w,T) = A(T) t^(1/z(T)) fits the data well at each
temperature within the whole temperature range studied, which extends from well
above the critical temperature to near T = 0 for dimension 2, or to well below
the critical temperature for the other space dimensions studied. In addition,
the data suggest that the dynamical critical exponent z varies smoothly when
crossing the transition temperature.Comment: 14 pages, 13 figures, 9 table
Kinetic limitations of cooperativity based drug delivery systems
We study theoretically a novel drug delivery system that utilizes the
overexpression of certain proteins in cancerous cells for cell specific
chemotherapy. The system consists of dendrimers conjugated with "keys" (ex:
folic acid) which "key-lock" bind to particular cell membrane proteins (ex:
folate receptor). The increased concentration of "locks" on the surface leads
to a longer residence time for the dendrimer and greater incorporation into the
cell. Cooperative binding of the nanocomplexes leads to an enhancement of cell
specificity. However, both our theory and detailed analysis of in-vitro
experiments indicate that the degree of cooperativity is kinetically limited.
We demonstrate that cooperativity and hence the specificity to particular cell
type can be increased by making the strength of individual bonds weaker, and
suggest a particular implementation of this idea. The implications of the work
for optimizing the design of drug delivery vehicles are discussed.Comment: 4 pages, 4 figures, v3: minor revision
Recommended from our members
Rapid Manufacturing of Silicon Carbide Composites
From the earliest days of SFF technology development, a viable technique for the direct
manufacture of fully-functional parts has been a major technology goal. While direct metal
methods have been demonstrated for a variety of metals including aluminum, steel and titanium,
they have not reached wide commercial application due to processing speed, final material
properties and surface finish. In this paper the development of an SLS-based rapid
manufacturing (RM) platform is reviewed. The core of this platform is a thermosetting binder
system for preform parts in contrast to the thermoplastic materials currently available for SLS.
The preforms may include metal and/or ceramic powders. A variety of fully functional parts
can be prepared from different combinations of materials and post processing steps including
binder pyrolysis, free-standing alloy infiltration, room temperature polymer infiltration and
machining. The main issues of these steps are reviewed followed by a discussion about the
support of RM. This paper is an intermediate report additional materials, applications, process
models and product design strategies will be incorporated into the project in the next year.Mechanical Engineerin
Io's radar properties
Arecibo 13 cm wavelength radar observations during 1987-90 have yielded echoes from Io on each of 11 dates. Whereas Voyager imaged parts of the satellite at resolutions of several km and various visible/infrared measurements have probed the surfaces's microscale properties, the radar data yield new information about the nature of the surface at cm to km scales. Our observations provide fairly thorough coverage and reveal significant heterogeneity in Io's radar properties. A figure is given showing sums of echo spectra from 11 dates
Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector
The concept of capacitive coupling between sensors and readout chips is under
study for the vertex detector at the proposed high-energy CLIC electron
positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an
active High-Voltage CMOS sensor, designed to be capacitively coupled to the
CLICpix2 readout chip. The chip is implemented in a commercial nm HV-CMOS
process and contains a matrix of square pixels with m
pitch. First prototypes have been produced with a standard resistivity of
cm for the substrate and tested in standalone mode. The
results show a rise time of ns, charge gain of mV/ke and
e RMS noise for a power consumption of W/pixel. The
main design aspects, as well as standalone measurement results, are presented.Comment: 13 pages, 13 figures, 2 tables. Work carried out in the framework of
the CLICdp collaboratio
- …
