11,734 research outputs found
On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer
A self-consistent calculation of the density of states and the spectral
density function is performed in a two-dimensional spin-polarized hole system
based on a multiple-scattering approximation. Using parameters corresponding to
GaMnAs thin layers, a wide range of Mn concentrations and hole densities have
been explored to understand the nature, localized or extended, of the
spin-polarized holes at the Fermi level for several values of the average
magnetization of the Mn ystem. We show that, for a certain interval of Mn and
hole densities, an increase on the magnetic order of the Mn ions come together
with a change of the nature of the states at the Fermi level. This fact
provides a delocalization of spin-polarized extended states anti-aligned to the
average Mn magnetization, and a higher spin-polarization of the hole gas. These
results are consistent with the occurrence of ferromagnetism with relatively
high transition temperatures observed in some thin film samples and
multilayered structures of this material.Comment: 3 page
Testing excitation models of rapidly oscillating Ap stars with interferometry
Rapidly oscillating Ap stars are unique objects in the potential they offer
to study the interplay between a number of important physical phenomena, in
particular, pulsations, magnetic fields, diffusion, and convection.
Nevertheless, the simple understanding of how the observed pulsations are
excited in these stars is still in progress. In this work we perform a test to
what is possibly the most widely accepted excitation theory for this class of
stellar pulsators. The test is based on the study of a subset of members of
this class for which stringent data on the fundamental parameters are available
thanks to interferometry. For three out of the four stars considered in this
study, we find that linear, non-adiabatic models with envelope convection
suppressed around the magnetic poles can reproduce well the frequency region
where oscillations are observed. For the fourth star in our sample no agreement
is found, indicating that a new excitation mechanism must be considered. For
the three stars whose observed frequencies can be explained by the excitation
models under discussion, we derive the minimum angular extent of the region
where convection must be suppressed. Finally, we find that the frequency
regions where modes are expected to be excited in these models is very
sensitive to the stellar radius. This opens the interesting possibility of
determining this quantity and related ones, such as the effective temperature
or luminosity, from comparison between model predictions and observations, in
other targets for which these parameters are not well determined.Comment: Accepted for publication in the MNRA
Probing tiny convective cores with the acoustic modes of lowest degree
Solar-like oscillations are expected to be excited in stars of up to about
1.6 solar masses. Most of these stars will have convective cores during their
Main-sequence evolution. At the edges of these convective cores there is a
rapid variation in the sound speed which influences the frequencies of acoustic
oscillations. In this paper we build on earlier work by Cunha and Metcalfe, to
investigate further the impact that these rapid structural variations have on
different p-mode frequency combinations, involving modes of low degree. In
particular, we adopt a different expression to describe the sound speed
variation at the edge of the core, which we show to reproduce more closely the
profiles derived from the equilibrium models. We analyse the impact of this
change on the frequency perturbation derived for radial modes. Moreover, we
consider three different small frequency separations involving, respectively,
modes of degree l = 0, 1, 2, 3; l = 0, 1; and l = 0, 2, and show that they are
all significantly affected by the sharp sound speed variation at the edge of
the core. In particular, we confirm that the frequency derivative of the
diagnostic tool that combines modes of degree up to 3 can potentially be used
to infer directly the amplitude of the relative sound speed variation at the
edge of the core. Concerning the other two diagnostic tools, we show that at
high frequencies they can be up to a few microhertzs smaller than what would be
expected in the absence of the rapid structural variation at the edge of the
core. Also, we show that the absolute values of their frequency derivatives are
significantly increased, in a manner that is strongly dependent on stellar age.Comment: 7 pages. submitted to A&
Magnetic ordering in GaAlAs:Mn double well structure
The magnetic order in the diluted magnetic semiconductor barrier of double
AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo
simulations. A confinement adapted RKKY mechanism is implemented for indirect
exchange between Mn ions mediated by holes. It is shown that, depending on the
barrier width and the hole concentration a ferromagnetic or a spin-glass order
can be established.Comment: 3 figure
P-248 Futility and utility of two-stage hepatectomy
Meeting abstract in the European-Society-for-Medical-Oncology (ESMO) 21st World Congress on Gastrointestinal Cancer.info:eu-repo/semantics/publishedVersio
- …