24 research outputs found

    Generalized Phase Space Representation of Operators

    Full text link
    Introducing asymmetry into the Weyl representation of operators leads to a variety of phase space representations and new symbols. Specific generalizations of the Husimi and the Glauber-Sudarshan symbols are explicitly derivedComment: latex, 8 pages, expanded version accepted by J. Phys.

    Observation of Coherent Elastic Neutrino-Nucleus Scattering

    Full text link
    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset

    Monitoring the SNS basement neutron background with the MARS detector

    Full text link
    We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the SNS basement corridor. This is the basement location of closest proximity to the SNS target and thus, of highest neutrino flux, but it is also well shielded from the BRN flux by infill concrete and gravel. These data show the detector registered roughly one BRN per day. Using MARS' measured detection efficiency, the incoming BRN flux is estimated to be 1.20 ± 0.56 neutrons/m2/MWh1.20~\pm~0.56~\text{neutrons}/\text{m}^2/\text{MWh} for neutron energies above 3.5\sim3.5~MeV and up to a few tens of MeV. We compare our results with previous BRN measurements in the SNS basement corridor reported by other neutron detectors.Comment: Submitted to JINS

    Measurement of scintillation response of CsI[Na] to low-energy nuclear recoils by COHERENT

    Full text link
    We present results of several measurements of CsI[Na] scintillation response to 3-60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region.Comment: The version accepted by JINST. The changes made as a result of the peer review process: 1. Section 8 "Global CsI[Na] QF data fit" is expanded. The main fit result and its uncertainty is NOT CHANGED. An alternative fit is now shown in Figure 14, Figure 15 is added to further validate the assumptions in the main fit. 2. The Appendix B is restructured for clarit

    Measurement of nat{}^{nat}Pb(νe\nu_e,Xnn) production with a stopped-pion neutrino source

    Full text link
    Using neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), the COHERENT collaboration has studied the Pb(νe\nu_e,Xnn) process with a lead neutrino-induced-neutron (NIN) detector. Data from this detector are fit jointly with previously collected COHERENT data on this process. A combined analysis of the two datasets yields a cross section that is 0.290.16+0.170.29^{+0.17}_{-0.16} times that predicted by the MARLEY event generator using experimentally-measured Gamow-Teller strength distributions, consistent with no NIN events at 1.8σ\sigma. This is the first inelastic neutrino-nucleus process COHERENT has studied, among several planned exploiting the high flux of low-energy neutrinos produced at the SNS.Comment: 11 pages, 9 figures, version accepted by Phys. Rev.
    corecore