1,477 research outputs found

    Exploring the Way to Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model

    Full text link
    Drift-diffusion model is an indispensable modeling tool to understand the carrier dynamics (transport, recombination, and collection) and simulate practical-efficiency of solar cells (SCs) through taking into account various carrier recombination losses existing in multilayered device structures. Exploring the way to predict and approach the SC efficiency limit by using the drift-diffusion model will enable us to gain more physical insights and design guidelines for emerging photovoltaics, particularly perovskite solar cells. Our work finds out that two procedures are the prerequisites for predicting and approaching the SC efficiency limit. Firstly, the intrinsic radiative recombination needs to be corrected after adopting optical designs which will significantly affect the open-circuit voltage at its Shockley-Queisser limit. Through considering a detailed balance between emission and absorption of semiconductor materials at the thermal equilibrium, and the Boltzmann statistics at the non-equilibrium, we offer a different approach to derive the accurate expression of intrinsic radiative recombination with the optical corrections for semiconductor materials. The new expression captures light trapping of the absorbed photons and angular restriction of the emitted photons simultaneously, which are ignored in the traditional Roosbroeck-Shockley expression. Secondly, the contact characteristics of the electrodes need to be carefully engineered to eliminate the charge accumulation and surface recombination at the electrodes. The selective contact or blocking layer incorporated nonselective contact that inhibits the surface recombination at the electrode is another important prerequisite. With the two procedures, the accurate prediction of efficiency limit and precise evaluation of efficiency degradation for perovskite solar cells are attainable by the drift-diffusion model.Comment: 32 pages, 11 figure

    Low-energy excitations of the one-dimensional half-filled SU(4) Hubbard model with an attractive on-site interaction: Density-matrix renormalization-group calculations and perturbation theory

    Full text link
    We investigate low-energy excitations of the one-dimensional half-filled SU(4) Hubbard model with an attractive on-site interaction U < 0 using the density matrix renormalization group method as well as a perturbation theory. We find that the ground state is a charge density wave state with a long range order. The ground state is completely incompressible since all the excitations are gapful. The charge gap which is the same as the four-particle excitation gap is a non-monotonic function of U, while the spin gap and others increase with increasing |U| and have linear asymptotic behaviors.Comment: 4 pages, 3 figures, submitte

    Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling

    Get PDF
    There exists a variety of proposals to transform a conventional s-wave superconductor into a topological superconductor, supporting Majorana fermion mid-gap states. A necessary ingredient of these proposals is strong spin-orbit coupling. Here we propose an alternative system consisting of a one-dimensional chain of magnetic nanoparticles on a superconducting substrate. No spin-orbit coupling in the superconductor is needed. We calculate the topological quantum number of a chain of finite length, including the competing effects of disorder in the orientation of the magnetic moments and in the hopping energies, to identify the transition into the topologically nontrivial state (with Majorana fermions at the end points of the chain).Comment: 7 pages, 5 figure

    The Impact of Place-Based Services on Child Maltreatment: Evaluation Through Big Data Linkage and Analytics

    Full text link
    There is a clear evidence that place is one factor associated with rates of child maltreatment and that rates of child abuse differ between different neighbourhoods and communities. Although there are few place-based initiatives (PBIs) focused specifically on child maltreatment, there is an increasing policy and research interest on PBIs that address a range of problems for children and families in disadvantaged communities. Evaluating the effectiveness of these initiatives is extremely challenging, both methodologically and ethically, but one potential way forward is to use linked administrative data to track outcomes of children and families. This chapter discusses the opportunities and challenges for the use of administrative data linkage in the evaluation of PBIs. The chapter is informed by interviews with 12 Australian experts on the use of ‘big data’ in public policy

    Controlling complex networks: How much energy is needed?

    Full text link
    The outstanding problem of controlling complex networks is relevant to many areas of science and engineering, and has the potential to generate technological breakthroughs as well. We address the physically important issue of the energy required for achieving control by deriving and validating scaling laws for the lower and upper energy bounds. These bounds represent a reasonable estimate of the energy cost associated with control, and provide a step forward from the current research on controllability toward ultimate control of complex networked dynamical systems.Comment: 4 pages paper + 5 pages supplement. accepted for publication in Physical Review Letters; http://link.aps.org/doi/10.1103/PhysRevLett.108.21870

    The Efficiency Limit of CH3NH3PbI3 Perovskite Solar Cells

    Get PDF
    With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.published_or_final_versio

    Insulating charge density wave for a half-filled SU(N) Hubbard model with an attractive on-site interaction in one dimension

    Full text link
    We study a one-dimensional SU(N) Hubbard model with an attractive on-site interaction and N>2N>2 at half-filling on the bipartite lattice using density-matrix renormalization-group method and a perturbation theory. We find that the ground state of the SU(N) Hubbard model is a charge density wave state with two-fold degeneracy. All the excitations are found to be gapful, resulting in an insulating ground state, on contrary to that in the SU(2) case. Moreover, the charge gap is equal to the Cooperon gap, which behaves as 2Nt2/(N1)U-2Nt^2/(N-1)U in the strong coupling regime. However, the spin gap Δs\Delta_{s} and the quasiparticle gap Δ1\Delta_{1} as well open exponentially in the weak coupling region, while in the strong coupling region, they linearly depend on UU such that ΔsU(N1)\Delta_{s}\sim -U(N-1) and Δ1U(N1)/2\Delta_{1}\sim -U(N-1)/2.Comment: 7 pages, 7 figure
    corecore