715 research outputs found

    Universal diffusion near the golden chaos border

    Full text link
    We study local diffusion rate DD in Chirikov standard map near the critical golden curve. Numerical simulations confirm the predicted exponent α=5\alpha=5 for the power law decay of DD as approaching the golden curve via principal resonances with period qnq_n (D∼1/qnαD \sim 1/q^{\alpha}_n). The universal self-similar structure of diffusion between principal resonances is demonstrated and it is shown that resonances of other type play also an important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure

    Poincar\'e recurrences in Hamiltonian systems with a few degrees of freedom

    Full text link
    Hundred twenty years after the fundamental work of Poincar\'e, the statistics of Poincar\'e recurrences in Hamiltonian systems with a few degrees of freedom is studied by numerical simulations. The obtained results show that in a regime, where the measure of stability islands is significant, the decay of recurrences is characterized by a power law at asymptotically large times. The exponent of this decay is found to be β≈1.3\beta \approx 1.3. This value is smaller compared to the average exponent β≈1.5\beta \approx 1.5 found previously for two-dimensional symplectic maps with divided phase space. On the basis of previous and present results a conjecture is put forward that, in a generic case with a finite measure of stability islands, the Poncar\'e exponent has a universal average value β≈1.3\beta \approx 1.3 being independent of number of degrees of freedom and chaos parameter. The detailed mechanisms of this slow algebraic decay are still to be determined.Comment: revtex 4 pages, 4 figs; Refs. and discussion adde

    Quantum Arnol'd Diffusion in a Simple Nonlinear System

    Full text link
    We study the fingerprint of the Arnol'd diffusion in a quantum system of two coupled nonlinear oscillators with a two-frequency external force. In the classical description, this peculiar diffusion is due to the onset of a weak chaos in a narrow stochastic layer near the separatrix of the coupling resonance. We have found that global dependence of the quantum diffusion coefficient on model parameters mimics, to some extent, the classical data. However, the quantum diffusion happens to be slower that the classical one. Another result is the dynamical localization that leads to a saturation of the diffusion after some characteristic time. We show that this effect has the same nature as for the studied earlier dynamical localization in the presence of global chaos. The quantum Arnol'd diffusion represents a new type of quantum dynamics and can be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.Comment: RevTex, 11 pages including 12 ps-figure

    Disruption of the three-body gravitational systems: Lifetime statistics

    Full text link
    We investigate statistics of the decay process in the equal-mass three-body problem with randomized initial conditions. Contrary to earlier expectations of similarity with "radioactive decay", the lifetime distributions obtained in our numerical experiments turn out to be heavy-tailed, i.e. the tails are not exponential, but algebraic. The computed power-law index for the differential distribution is within the narrow range, approximately from -1.7 to -1.4, depending on the virial coefficient. Possible applications of our results to studies of the dynamics of triple stars known to be at the edge of disruption are considered.Comment: 13 pages, 2 tables, 3 figure

    Quantum Ergodicity and Localization in Conservative Systems: the Wigner Band Random Matrix Model

    Full text link
    First theoretical and numerical results on the global structure of the energy shell, the Green function spectra and the eigenfunctions, both localized and ergodic, in a generic conservative quantum system are presented. In case of quantum localization the eigenfunctions are shown to be typically narrow and solid, with centers randomly scattered within the semicircle energy shell while the Green function spectral density (local spectral density of states) is extended over the whole shell, but sparse.Comment: 4 pages in RevTex and 4 Postscript figures; presented to Phys. Lett.

    Kepler-16b: safe in a resonance cell

    Full text link
    The planet Kepler-16b is known to follow a circumbinary orbit around a system of two main-sequence stars. We construct stability diagrams in the "pericentric distance - eccentricity" plane, which show that Kepler-16b is in a hazardous vicinity to the chaos domain - just between the instability "teeth" in the space of orbital parameters. Kepler-16b survives, because it is close to the stable half-integer 11/2 orbital resonance with the central binary, safe inside a resonance cell bounded by the unstable 5/1 and 6/1 resonances. The neighboring resonance cells are vacant, because they are "purged" by Kepler-16b, due to overlap of first-order resonances with the planet. The newly discovered planets Kepler-34b and Kepler-35b are also safe inside resonance cells at the chaos border.Comment: 17 pages, including 5 figure

    Big Entropy Fluctuations in Nonequilibrium Steady State: A Simple Model with Gauss Heat Bath

    Full text link
    Large entropy fluctuations in a nonequilibrium steady state of classical mechanics were studied in extensive numerical experiments on a simple 2-freedom model with the so-called Gauss time-reversible thermostat. The local fluctuations (on a set of fixed trajectory segments) from the average heat entropy absorbed in thermostat were found to be non-Gaussian. Approximately, the fluctuations can be discribed by a two-Gaussian distribution with a crossover independent of the segment length and the number of trajectories ('particles'). The distribution itself does depend on both, approaching the single standard Gaussian distribution as any of those parameters increases. The global time-dependent fluctuations turned out to be qualitatively different in that they have a strict upper bound much less than the average entropy production. Thus, unlike the equilibrium steady state, the recovery of the initial low entropy becomes impossible, after a sufficiently long time, even in the largest fluctuations. However, preliminary numerical experiments and the theoretical estimates in the special case of the critical dynamics with superdiffusion suggest the existence of infinitely many Poincar\'e recurrences to the initial state and beyond. This is a new interesting phenomenon to be farther studied together with some other open questions. Relation of this particular example of nonequilibrium steady state to a long-standing persistent controversy over statistical 'irreversibility', or the notorious 'time arrow', is also discussed. In conclusion, an unsolved problem of the origin of the causality 'principle' is touched upon.Comment: 21 pages, 7 figure

    Big Entropy Fluctuations in Statistical Equilibrium: The Macroscopic Kinetics

    Full text link
    Large entropy fluctuations in an equilibrium steady state of classical mechanics were studied in extensive numerical experiments on a simple 2--freedom strongly chaotic Hamiltonian model described by the modified Arnold cat map. The rise and fall of a large separated fluctuation was shown to be described by the (regular and stable) "macroscopic" kinetics both fast (ballistic) and slow (diffusive). We abandoned a vague problem of "appropriate" initial conditions by observing (in a long run)spontaneous birth and death of arbitrarily big fluctuations for any initial state of our dynamical model. Statistics of the infinite chain of fluctuations, reminiscent to the Poincar\'e recurrences, was shown to be Poissonian. A simple empirical relation for the mean period between the fluctuations (Poincar\'e "cycle") has been found and confirmed in numerical experiments. A new representation of the entropy via the variance of only a few trajectories ("particles") is proposed which greatly facilitates the computation, being at the same time fairly accurate for big fluctuations. The relation of our results to a long standing debates over statistical "irreversibility" and the "time arrow" is briefly discussed too.Comment: Latex 2.09, 26 pages, 6 figure

    Manifestation of the Arnol'd Diffusion in Quantum Systems

    Full text link
    We study an analog of the classical Arnol'd diffusion in a quantum system of two coupled non-linear oscillators one of which is governed by an external periodic force with two frequencies. In the classical model this very weak diffusion happens in a narrow stochastic layer along the coupling resonance, and leads to an increase of total energy of the system. We show that the quantum dynamics of wave packets mimics, up to some extent, global properties of the classical Arnol'd diffusion. This specific diffusion represents a new type of quantum dynamics, and may be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.Comment: RevTex, 4 pages including 7 ps-figures, corrected forma

    Scar Intensity Statistics in the Position Representation

    Full text link
    We obtain general predictions for the distribution of wave function intensities in position space on the periodic orbits of chaotic ballistic systems. The expressions depend on effective system size N, instability exponent lambda of the periodic orbit, and proximity to a focal point of the orbit. Limiting expressions are obtained that include the asymptotic probability distribution of rare high-intensity events and a perturbative formula valid in the limit of weak scarring. For finite system sizes, a single scaling variable lambda N describes deviations from the semiclassical N -> infinity limit.Comment: To appear in Phys. Rev. E, 10 pages, including 4 figure
    • …
    corecore