2,619 research outputs found

    Size, shape, and flexibility of RNA structures

    Full text link
    Determination of sizes and flexibilities of RNA molecules is important in understanding the nature of packing in folded structures and in elucidating interactions between RNA and DNA or proteins. Using the coordinates of the structures of RNA in the Protein Data Bank we find that the size of the folded RNA structures, measured using the radius of gyration, RGR_G, follows the Flory scaling law, namely, RG=5.5N1/3R_G =5.5 N^{1/3} \AA where N is the number of nucleotides. The shape of RNA molecules is characterized by the asphericity Δ\Delta and the shape SS parameters that are computed using the eigenvalues of the moment of inertia tensor. From the distribution of Δ\Delta, we find that a large fraction of folded RNA structures are aspherical and the distribution of SS values shows that RNA molecules are prolate (S>0S>0). The flexibility of folded structures is characterized by the persistence length lpl_p. By fitting the distance distribution function P(r)P(r) to the worm-like chain model we extracted the persistence length lpl_p. We find that lp1.5N0.33l_p\approx 1.5 N^{0.33} \AA. The dependence of lpl_p on NN implies the average length of helices should increases as the size of RNA grows. We also analyze packing in the structures of ribosomes (30S, 50S, and 70S) in terms of RGR_G, Δ\Delta, SS, and lpl_p. The 70S and the 50S subunits are more spherical compared to most RNA molecules. The globularity in 50S is due to the presence of an unusually large number (compared to 30S subunit) of small helices that are stitched together by bulges and loops. Comparison of the shapes of the intact 70S ribosome and the constituent particles suggests that folding of the individual molecules might occur prior to assembly.Comment: 28 pages, 8 figures, J. Chem. Phys. in pres

    Gating-by-tilt of mechanosensitive membrane channels

    Full text link
    We propose an alternative mechanism for the gating of biological membrane channels in response to membrane tension that involves a change in the slope of the membrane near the channel. Under biological membrane tensions we show that the energy difference between the closed (tilted) and open (untilted) states can far exceed kBT and is comparable to what is available under simple ilational gating. Recent experiments demonstrate that membrane leaflet asymmetries (spontaneous curvature) can strong effect the gating of some channels. Such a phenomenon would be more easy to explain under gating-by-tilt, given its novel intrinsic sensitivity to such asymmetry.Comment: 10 pages, 2 figure

    "Doubled" generalized Landau-Lifshiz hierarchies and special quasigraded Lie algebras

    Full text link
    Using special quasigraded Lie algebras we obtain new hierarchies of integrable nonlinear vector equations admitting zero-curvature representations. Among them the most interesting is extension of the generalized Landau-Lifshitz hierarchy which we call "doubled" generalized Landau-Lifshiz hierarchy. This hierarchy can be also interpreted as an anisotropic vector generalization of "modified" Sine-Gordon hierarchy or as a very special vector generalization of so(3) anisotropic chiral field hierarchy.Comment: 16 pages, no figures, submitted to Journal of Physics

    Testing Hardy nonlocality proof with genuine energy-time entanglement

    Full text link
    We show two experimental realizations of Hardy ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by A. Cabello \emph{et al.} [Phys. Rev. Lett. \textbf{102}, 040401 (2009)]. Unlike, previous energy-time Bell experiments, these tests require precise tailored nonmaximally entangled states. One of them is equivalent to the two-setting two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.Comment: 5 pages, revtex4, 6 figure

    Absorption spectrum in the wings of the potassium second resonance doublet broadened by helium

    Full text link
    We have measured the reduced absorption coefficients occurring in the wings of the potassium 4S-5P doublet lines at 404.414 nm and at 404.720 nm broadened by helium gas at pressures of several hundred Torr. At the experimental temperature of 900 K, we have detected a shoulder-like broadening feature on the blue wing of the doublet which is relatively flat between 401.8 nm and 402.8 nm and which drops off rapidly for shorter wavelengths, corresponding to absorption from the X doublet Sigma+ state to the C doublet Sigma+ state of the K-He quasimolecule. The accurate measurements of the line profiles in the present work will sharply constrain future calculations of potential energy surfaces and transition dipole moments correlating to the asymptotes He-K(5p), He-K(5s), and He-K(3d).Comment: 2 figure

    Energetic Components of Cooperative Protein Folding

    Full text link
    A new lattice protein model with a four-helix bundle ground state is analyzed by a parameter-space Monte Carlo histogram technique to evaluate the effects of an extensive variety of model potentials on folding thermodynamics. Cooperative helical formation and contact energies based on a 5-letter alphabet are found to be insufficient to satisfy calorimetric and other experimental criteria for two-state folding. Such proteinlike behaviors are predicted, however, by models with polypeptide-like local conformational restrictions and environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press

    Contribution of common and rare variants to bipolar disorder susceptibility in extended pedigrees from population isolates.

    Get PDF
    Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had higher PRS estimated from BP1 GWAS statistics (P = 0.001 ~ 0.007) and displayed modest increase in burdens of rare deleterious SNVs (P = 0.047) and rare CNVs (P = 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants

    Using LISREL to analyze genetic and environmental covariance structure

    Get PDF
    Describes a method in which the linear structural relationships (LISREL) computer program is used for the genetic analysis of covariance structure. The method is illustrated with simulated and published twin data, including an analysis of twin data by N. G. Martin et al (1981) on psychomotor performance during alcohol intoxication

    Phase transitions in biological membranes

    Full text link
    Native membranes of biological cells display melting transitions of their lipids at a temperature of 10-20 degrees below body temperature. Such transitions can be observed in various bacterial cells, in nerves, in cancer cells, but also in lung surfactant. It seems as if the presence of transitions slightly below physiological temperature is a generic property of most cells. They are important because they influence many physical properties of the membranes. At the transition temperature, membranes display a larger permeability that is accompanied by ion-channel-like phenomena even in the complete absence of proteins. Membranes are softer, which implies that phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal propagation phenomena related to nerve pulses are strongly enhanced. The position of transitions can be affected by changes in temperature, pressure, pH and salt concentration or by the presence of anesthetics. Thus, even at physiological temperature, these transitions are of relevance. There position and thereby the physical properties of the membrane can be controlled by changes in the intensive thermodynamic variables. Here, we review some of the experimental findings and the thermodynamics that describes the control of the membrane function.Comment: 23 pages, 15 figure
    corecore