58 research outputs found

    Familial hypomagnesaemia, Hypercalciuria and Nephrocalcinosis associated with a novel mutation of the highly conserved leucine residue 116 of Claudin 16 in a Chinese patient with a delayed diagnosis: A case report

    Get PDF
    Background: Sixty mutations of claudin 16 coding gene have been reported in familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) patients. Recent investigations revealed that a highly conserved glycine-leucine-tryptophan (115G-L-W117) motif in the first extracellular segment (ESC1) of claudin 16 might be essential for stabilization of the appropriately folded ECS1 structure and conservation of normal claudin 16 function. However, neither missense nor nonsense mutation has ever been described in this motif. Our study aimed at identifying mutations in a Chinese patient with FHHNC and exploring the association between genotype and phenotype. Case presentation: A 33-year-old female presented with 4 years history of recurrent acute pyelonephritis without other notable past medical history. Her healthy parents, who aged 56 and 53 respectively, were second cousins, and her only sibling died from renal failure without definite cause at age 25. Renal ultrasound imaging demonstrated atrophic kidneys and bilateral nephrocalcinosis. The laboratory workup revealed impaired renal function (Stage CKD IV), hypocalcemia and mild hypomagnesemia, accompanied with marked renal loss of magnesium and hypercalciuria. During the follow-up, treatment with calcitriol and calcium but not with magnesium was difficult to achieve normal serum calcium levels, whereas her serum magnesium concentration fluctuated within normal ranges. In the end, the patient unavoidably reached ESRD at 36 years old. The clinical features and family history suggested the diagnosis of FHHNC. To make a definite diagnosis, we use whole-exome sequencing to identify the disease-causing mutations and Sanger sequencing to confirm the mutation co-segregation in the family. As a result, a novel homozygous mutation (c.346C > G, p.Leu116Val) in115G-L-W117motif of claudin 16 was identified. Her parents, grandmother and one of her cousins carried heterozygous p.Leu116Val, whereas 200 unrelated controls did not carry this mutation. Conclusions: We described a delayed diagnosis patient with FHHNC in the Chinese population and identified a novel missense mutation in the highly conserved115G-L-W117motif of claudin 16 for the first time. According to the reported data and the information deduced from 3D modeling, we speculate that this mutation probably reserve partial residual function which might be related to the slight phenotype of the patient

    Identification of a novel TSC2 c.3610G > A, p.G1204R mutation contribute to aberrant splicing in a patient with classical tuberous sclerosis complex: a case report

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in any organ systems. Mutations in the TSC1 or TSC2 gene lead to the dysfunction of hamartin or tuberin proteins, which cause tuberous sclerosis complex. Case presentation: We describe the clinical characteristics of patients from a Chinese family with tuberous sclerosis complex and analyze the functional consequences of their causal genetic mutations. A novel heterozygous mutation (c.3610G > A) at the last nucleotide of exon 29 in TSC2 was identified. On the protein level, this variant was presumed to be a missense mutation (p.Gly1204Arg). However, the splicing assay revealed that this mutation also leads to the whole TSC2 exon 29 skipping, besides the wild-type transcript. The mutated transcript results in an in-frame deletion of 71 amino acids (p.Gly1133_Thr1203del) and its ratio with the normal splice product is of about 44:56. Conclusions: The novel c.3610G > A TSC2 mutation was identified in association with tuberous sclerosis complex. And it was proven to code both for a missense-carrying transcript (56%), and for an isoform lacking exon 29 (44%)

    Identification of a variant hotspot in MYBPC3 and of a novel CSRP3 autosomal recessive alteration in a cohort of Polish patients with hypertrophic cardiomyopathy

    Get PDF
    INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a heart disorder caused by autosomal dominant alterations affecting both sarcomeric genes and other nonsarcomeric loci in a minority of cases. However, in some patients, the occurrence of the causal pathogenic variant or variants in homozygosity, compound heterozygosity, or double heterozygosity has also been described. Most of the HCM pathogenic variants are missense and unique, but truncating mutations of the MYBPC3 gene have been reported as founder pathogenic variants in populations from Finland, France, Japan, Iceland, Italy, and the Netherlands. OBJECTIVES This study aimed to assess the genetic background of HCM in a cohort of Polish patients. PATIENTS AND METHODS Twenty–nine Polish patients were analyzed by a next–generation sequencing panel including 404 cardiovascular genes. RESULTS Pathogenic variants were found in 41% of the patients, with ultra–rare MYBPC3 c.2541C>G (p.Tyr847Ter) mutation standing for a variant hotspot and correlating with a lower age at HCM diagnosis. Among the nonsarcomeric genes, the CSRP3 mutation was found in a single case carrying the novel c.364C>T (p.Arg122Ter) variant in homozygosity. With this finding, the total number of known HCM cases with human CSRP3 knockout cases has reached 3

    Study of USH1 Splicing Variants through Minigenes and Transcript Analysis from Nasal Epithelial Cells

    Get PDF
    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient’s tissues. The last objective was to evaluate the nasal ciliary beat frequency in patients with USH1 and compare it with control subjects. In silico analysis were performed using four bioinformatic programs: NNSplice, Human Splicing Finder, NetGene2 and Spliceview. Afterward, minigenes based on the pSPL3 vector were used to investigate the implication of selected changes in the mRNA processing. To observe the effect of mutations in the patient’s tissues, RNA was extracted from nasal epithelial cells and RT-PCR analyses were performed. Four MYO7A (c.470G>A, c.1342_1343delAG, c.5856G>A and c.3652G>A), three CDH23 (c.2289+1G>A, c.6049G>A and c.8722+1delG) and one PCDH15 (c.3717+2dupTT) variants were observed to affect the splicing process by minigene assays and/or transcripts analysis obtained from nasal cells. Based on our results, minigenes are a good approach to determine the implication of identified variants in the mRNA processing, and the analysis of RNA obtained from nasal epithelial cells is an alternative method to discriminate neutral Usher variants from those with a pathogenic effect on the splicing process. In addition, we could observe that the nasal ciliated epithelium of USH1 patients shows a lower ciliary beat frequency than control subjects

    Update on hypertrophic cardiomyopathy and a guide to the guidelines

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, affecting 1 in 500 individuals worldwide. Existing epidemiological studies might have underestimated the prevalence of HCM, however, owing to limited inclusion of individuals with early, incomplete phenotypic expression. Clinical manifestations of HCM include diastolic dysfunction, left ventricular outflow tract obstruction, ischaemia, atrial fibrillation, abnormal vascular responses and, in 5% of patients, progression to a 'burnt-out' phase characterized by systolic impairment. Disease-related mortality is most often attributable to sudden cardiac death, heart failure, and embolic stroke. The majority of individuals with HCM, however, have normal or near-normal life expectancy, owing in part to contemporary management strategies including family screening, risk stratification, thromboembolic prophylaxis, and implantation of cardioverter-defibrillators. The clinical guidelines for HCM issued by the ACC Foundation/AHA and the ESC facilitate evaluation and management of the disease. In this Review, we aim to assist clinicians in navigating the guidelines by highlighting important updates, current gaps in knowledge, differences in the recommendations, and challenges in implementing them, including aids and pitfalls in clinical and pathological evaluation. We also discuss the advances in genetics, imaging, and molecular research that will underpin future developments in diagnosis and therapy for HCM

    A novel mutation in exon 9 of Cullin 3 gene contributes to aberrant splicing in pseudohypoaldosteronism type II

    No full text
    Pseudohypoaldosteronism type II (PHAII) is a rare renal tubular disease that is inherited in an autosomal dominant manner. Mutations in four genes (WNK1, WNK4, CUL3, and KLHL3) have been identified to be responsible for this disease. Cullin 3 (CUL3) and KLHL3 are subunits of Cullin–RING E3 ubiquitin ligase complexes, and the serine–threonine kinases WNK1 and WNK4 are substrates of this ubiquitin ligase. For CUL3, all mutations associated with PHAII exclusively lead to exon 9 skipping. In this study, we identified a Chinese PHAII kindred caused by a novel synonymous mutation (c.1221A > G p.Glu407Glu) in CUL3, and explored its effects on exon 9 abnormal splicing through an in vitro splicing assay and study of the patients’ RNA. We obtained evidence that this synonymous mutation leads to complete exon 9 skipping, and in silico bioinformatics analysis demonstrated that the CUL3 c.1221A > G mutation might decrease the ratio of exonic splicing enhancers and silencers. This is the first report of PHAII in Chinese patients with a novel CUL3 mutation. Our findings add a novel pathogenic splicing variant to the CUL3 mutational spectrum and provide reference for further research on mechanisms of splicing modulation and development of potential therapeutic reagents for PHAII

    Triple A syndrome: A novel compound heterozygous mutation in the AAAS gene in an Italian patient without adrenal insufficiency

    No full text
    Allgrove syndrome (or triple A syndrome) is a rare autosomal recessive disorder characterized by alacrima, achalasia, ACTH-resistant adrenal insufficiency and autonomic/neurological abnormalities. It is caused by mutations in the AAAS gene. located on chromosome 12q13. We describe a 42-year-old patient who presented with neuropathy and was found to have alacrima, achalasia, mild autonomic dysfunction with significant central and peripheral nervous system involvement. She was later diagnosed with oligosymptomatic triple A syndrome. Sequencing of the AAAS gene identified two heterozygous mutations within exon 14 and its donor splice site (p.L430F - c.1288C>T and c.1331 + 1G>T), one of which is novel. Allgrove syndrome should be suspected in patients with neurological impairment associated with two or more of the main symptoms (alacrima, achalasia or adrenal insufficiency). (C) 2009 Elsevier B.V. All rights reserved

    Striking phenotypic overlap between Nicolaides-Baraitser and Coffin-Siris syndromes in monozygotic twins with ARID1B intragenic deletion

    No full text
    The chromatin remodeling AT-Rich interaction domain containing 1B protein (ARID1B) also known as BAF-associated factor, 250-KD, B (BAF250B) codified by the ARID1B gene (MIM#614556), is a small subunit of the mammalian SWI/SNF or BAF complex, an ATP-dependent protein machinery which is able to activate or repress gene transcription, allowing protein access to histones through DNA relaxed conformation. ARID1B gene mutations have been associated with two hereditary syndromic conditions, namely Coffin-Siris (CSS, MIM#135900) and Nicolaides-Baraitser syndromes (NCBRS, MIM#601358), characterized by neurodevelopment delay, craniofacial dysmorphisms and skeletal anomalies. Furthermore, intellectual impairment and central nervous system (CNS) alterations, comprising abnormal corpus callosum, have been associated with mutations in this gene. Moreover, ARID1B anomalies resulted to be involved in neoplastic events and Hirschprung disease. Here we report on two monozygotic male twins, displaying clinical appearance strikingly resembling NCBRS and CSS phenotype, who resulted carriers of a novel 6q25.3 microdeletion, encompassing only part of the ARID1B gene. The deleted segment was not inherited from the only parent tested and afflicted the first exons of the gene, coding for protein disordered region. We also provide, for the first time, a review of previously published ARID1B mutated patients with NCBRS and CSS phenotype and a computer-assisted dysmorphology analysis of NCBRS and ARID1B related CSS individuals, through the Face2Gene suite, confirming the existence of highly overlapping facial gestalt of both conditions. The present findings indicate that ARID1B could be considered a contributing gene not only in CSS but also in NCBRS phenotype, although the main gene related to this latter condition is the SMARCA2 gene (MIM#600014), another component of the BAF complex. So, ARID1B study should be considered in such individuals

    The PI3K pathway induced by αMSH exerts a negative feedback on melanogenesis and contributes to the release of pigment

    No full text
    The melanocortin-1 receptor (MC1R) belongs to the family of the G protein-coupled receptor (GPCR). Activated GPCRs can promote the phosphoinositide 3-kinase (PI3K) pathway. Few studies deal with the role of the PI3K pathway activation in response to αMSH. On B16-F10 cell line, we investigated the αMSH-dependent modulation of pAKT/AKT, as a key element of the PI3K pathway after rapid and prolonged stimulation. We demonstrated that αMSH triggers a rapid modulation of AKT which culminates in an increase in its phosphorylation. We highlighted a comparable upregulation of pAKT after exposure to αMSH on primary cultures of normal human melanocytes (NHMs) expressing a wild-type MC1R. On B16-F10 cells, NHMs, and an ex vivo model of human skin biopsies, we explored the influence of PI3K/AKT signaling triggered by αMSH, focusing on the control of melanogenesis and pigment release. We showed that the αMSH-dependent PI3K/AKT pathway exerts a negative feedback on melanogenesis and promotes the extracellular release of pigment. We strengthened the role of the PI3K/AKT pathway triggered by αMSH in preserving redox equilibrium and genome integrity, highlighting its role in affecting cell survival

    Eleven novel SLC12A1 variants and an exonic mutation cause exon skipping in Bartter syndrome type I

    No full text
    Introduction: Bartter syndrome type I (BS1) has been rarely reported in large groups. On the other hand, the phenomenon of exon skipping, in which exonic mutations result in abnormal splicing, has been reported to be associated with various diseases. Specifically, mutations that result in the disruption of exonic splicing enhancers (ESEs) and/or the creation of exonic splicing silencers (ESSs) can promote exon skipping. However, the aberrant exon skipping caused by an exonic variant in such splicing regulatory elements (SREs) sequences has never been reported in the causal gene of SLC12A1 in BS1. Methods: We analyze the variants in nine Chinese families with BS1, including eight with antenatal BS (aBS) and one presenting as classical BS (cBS), by next-generation sequencing. Then we used bioinformatics programs to analyze all these variants found in this study and identify candidate mutations that may induce exon skipping. Furthermore, the effects of identified variants were classified according to the 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines. Results: Fifteen different variants of SLC12A1 gene were identified, including 11 novel ones. Two of the nine probands were homozygotes, the rest seven ones were compound heterozygotes. One candidate variant (c.1435C>G), not only significantly reduced ESEs scores but also markedly increased ESSs scores, were further investigated by mini-gene splicing assay, and found this single-nucleotide substitution causes abnormal splicing in vitro (exclusion of exon 11). Finally, among 15 variants, 9, 3, and 3 were classified as “pathogenic variants”, “likely pathogenic variants”, “variants with uncertain significance”, respectively. Conclusion: These data would enrich the human gene mutation database (HGMD) and would provide valuable references to the genetic counseling and diagnosis of BS1 for Chinese population. Additionally, our results suggest that aberrant exon skipping is one previously unrecognized mechanism by which an exonic variant in SLC12A1 can lead to BS1
    • …
    corecore