1,386 research outputs found
The vacuum preserving Lie algebra of a classical W-algebra
We simplify and generalize an argument due to Bowcock and Watts showing that
one can associate a finite Lie algebra (the `classical vacuum preserving
algebra') containing the M\"obius subalgebra to any classical
\W-algebra. Our construction is based on a kinematical analysis of the
Poisson brackets of quasi-primary fields. In the case of the \W_\S^\G-algebra
constructed through the Drinfeld-Sokolov reduction based on an arbitrary
subalgebra of a simple Lie algebra \G, we exhibit a natural
isomorphism between this finite Lie algebra and \G whereby the M\"obius
is identified with .Comment: 11 pages, BONN-HE-93-25, DIAS-STP-93-13. Some typos had been removed,
no change in formula
Millimeter-wave study of London penetration depth temperature dependence in Ba(Fe0.926Co0.074)2As2 single crystal
In-plane surface Ka-band microwave impedance of optimally doped single
crystals of the Fe-based superconductor Ba(Fe0.926Co0.074)2As2 (Tc= 22.8K) was
measured. Sensitive sapphire disk quasi-optical resonator with high-Tc cuprate
conducting endplates was developed specially for Fe-pnictide superconductors.
It allowed finding temperature variation of London penetration depth in a form
of power law, namely \Delta \lambda (T)~ Tn with n = 2.8 from low temperatures
up to at least 0.6Tc consisted with radio-frequency measurements. This exponent
points towards nodeless state with pairbreaking scattering, which can support
one of the extended s-pairing symmetries. The dependence \lambda(T) at low
temperatures is well described by one superconducting small-gap (\Delta \cong
0.75 in kTc units, where k is Boltzman coefficient) exponential dependence.Comment: 6 pages, 2 figures, to be published in Low Temperature
Physics,vol.37, August 201
Intrinsisch ungeordnete Osteopontin-Fragmente ordnen sich wÀhrend der interfazialen Calciumoxalat-Mineralisierung
Calcium oxalate (CaC(2)O(4)) is the major component of kidney stone. The acidic osteopontin (OPN) protein in human urine can effectively inhibit the growth of CaC(2)O(4) crystals, thereby acting as a potent stone preventer. Previous studies in bulk solution all attest to the importance of binding and recognition of OPN at the CaC(2)O(4) mineral surface, yet molecular level insights into the active interface during CaC(2)O(4) mineralization are still lacking. Here, we probe the structure of the central OPN fragment and its interaction with Ca(2+) and CaC(2)O(4) at the waterâair interface using surfaceâspecific nonâlinear vibrational spectroscopy. While OPN peptides remain largely disordered in solution, our results reveal that the bidentate binding of Ca(2+) ions refold the interfacial peptides into wellâordered and assembled ÎČâturn motifs. One critical intermediate directs mineralization by releasing structural freedom of backbone and binding side chains. These insights into the mineral interface are crucial for understanding the pathological development of kidney stones and possibly relevant for calcium oxalate biomineralization in general
On the T-dependence of the magnetic penetration depth in unconventional superconductors at low temperatures: can it be linear?
We present a thermodynamics argument against a strictly linear temperature
dependence of the magnetic penetration depth, which applies to superconductors
with arbitrary pairing symmetry at low temperatures.Comment: 5 pages, expanded version of cond-mat/971102
Spin susceptibility of charge ordered YBa2Cu3Oy across the upper critical field
The value of the upper critical field Hc2, a fundamental characteristic of
the superconducting state, has been subject to strong controversy in high-Tc
copper-oxides. Since the issue has been tackled almost exclusively by
macroscopic techniques so far, there is a clear need for local-probe
measurements. Here, we use 17O NMR to measure the spin susceptibility
of the CuO2 planes at low temperature in charge ordered
YBa2Cu3Oy. We find that increases (most likely linearly) with
magnetic field H and saturates above field values ranging from 20 to 40 T. This
result is consistent with Hc2 values claimed by G. Grissonnanche et al. [Nat.
Commun. 5, 3280 (2014)] and with the interpretation that the
charge-density-wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the
absence of marked deviation in at the onset of long-range CDW
order indicates that this Hc2 reduction and the Fermi-surface reconstruction
are primarily rooted in the short-range CDW order already present in zero
field, not in the field-induced long-range CDWorder. Above Hc2, the relatively
low values of at T=2 K show that the pseudogap is a ground-state
property, independent of the superconducting gap.Comment: To appea
Fermi Surface and Quasiparticle Excitations of overdoped Tl2Ba2CuO6+d by ARPES
The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is
studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface
consists of a single large hole pocket centered at (pi,pi) and is approaching a
topological transition. Although a superconducting gap with d_x^2-y^2 symmetry
is tentatively identified, the quasiparticle evolution with momentum and
binding energy exhibits a marked departure from the behavior observed in under
and optimally doped cuprates. The relevance of these findings to scattering,
many-body, and quantum-critical phenomena is discussed.Comment: Revised manuscript, in press on PRL. A high-resolution version can be
found at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/Tl2201_LE.pdf
and related material at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
- âŠ