54 research outputs found

    National strategy for palliative care of severely ill and dying people and their relatives in pandemics (PallPan) in Germany - study protocol of a mixed-methods project

    Get PDF
    BACKGROUND In the SARS-CoV-2 pandemic, general and specialist Palliative Care (PC) plays an essential role in health care, contributing to symptom control, psycho-social support, and providing support in complex decision making. Numbers of COVID-19 related deaths have recently increased demanding more palliative care input. Also, the pandemic impacts on palliative care for non-COVID-19 patients. Strategies on the care for seriously ill and dying people in pandemic times are lacking. Therefore, the program 'Palliative care in Pandemics' (PallPan) aims to develop and consent a national pandemic plan for the care of seriously ill and dying adults and their informal carers in pandemics including (a) guidance for generalist and specialist palliative care of patients with and without SARS-CoV-2 infections on the micro, meso and macro level, (b) collection and development of information material for an online platform, and (c) identification of variables and research questions on palliative care in pandemics for the national pandemic cohort network (NAPKON). METHODS Mixed-methods project including ten work packages conducting (online) surveys and qualitative interviews to explore and describe i) experiences and burden of patients (with/without SARS-CoV-2 infection) and their relatives, ii) experiences, challenges and potential solutions of health care professionals, stakeholders and decision makers during the SARS-CoV-2 pandemic. The work package results inform the development of a consensus-based guidance. In addition, best practice examples and relevant literature will be collected and variables for data collection identified. DISCUSSION For a future \textquotedblpandemic preparedness\textquotedbl national and international recommendations and concepts for the~care of severely ill and dying people are necessary considering both generalist and specialist palliative care in the home care and inpatient setting

    Cell-Cycle Dependence of Transcription Dominates Noise in Gene Expression

    Get PDF
    The large variability in mRNA and protein levels found from both static and dynamic measurements in single cells has been largely attributed to random periods of transcription, often occurring in bursts. The cell cycle has a pronounced global role in affecting transcriptional and translational output, but how this influences transcriptional statistics from noisy promoters is unknown and generally ignored by current stochastic models. Here we show that variable transcription from the synthetic tetO promoter in S. cerevisiae is dominated by its dependence on the cell cycle. Real-time measurements of fluorescent protein at high expression levels indicate tetO promoters increase transcription rate ~2-fold in S/G2/M similar to constitutive genes. At low expression levels, where tetO promoters are thought to generate infrequent bursts of transcription, we observe random pulses of expression restricted to S/G2/M, which are correlated between homologous promoters present in the same cell. The analysis of static, single-cell mRNA measurements at different points along the cell cycle corroborates these findings. Our results demonstrate that highly variable mRNA distributions in yeast are not solely the result of randomly switching between periods of active and inactive gene expression, but instead largely driven by differences in transcriptional activity between G1 and S/G2/M.GM095733BBBE 103316MIT Startup Fun

    Hedgehog partial agonism drives warburg-lie metabolism in muscle and brown fat

    Get PDF
    Diabetes, obesity, and cancer affect upward of 15% of the world&rsquo;s population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca2+-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of &ldquo;selective partial agonists,&rdquo; capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.<br /

    TSC1 activates TGF-β-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition.

    Get PDF
    The tuberous sclerosis proteins TSC1 and TSC2 are key integrators of growth factor signaling. They suppress cell growth and proliferation by acting in a heteromeric complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1). In this study, we identify TSC1 as a component of the transforming growth factor β (TGF-β)-Smad2/3 pathway. Here, TSC1 functions independently of TSC2. TSC1 interacts with the TGF-β receptor complex and Smad2/3 and is required for their association with one another. TSC1 regulates TGF-β-induced Smad2/3 phosphorylation and target gene expression and controls TGF-β-induced growth arrest and epithelial-to-mesenchymal transition (EMT). Hyperactive Akt specifically activates TSC1-dependent cytostatic Smad signaling to induce growth arrest. Thus, TSC1 couples Akt activity to TGF-β-Smad2/3 signaling. This has implications for cancer treatments targeting phosphoinositide 3-kinases and Akt because they may impair tumor-suppressive cytostatic TGF-β signaling by inhibiting Akt- and TSC1-dependent Smad activation
    • …
    corecore