5,512 research outputs found

    Scalar Field Probes of Power-Law Space-Time Singularities

    Full text link
    We analyse the effective potential of the scalar wave equation near generic space-time singularities of power-law type (Szekeres-Iyer metrics) and show that the effective potential exhibits a universal and scale invariant leading x^{-2} inverse square behaviour in the ``tortoise coordinate'' x provided that the metrics satisfy the strict Dominant Energy Condition (DEC). This result parallels that obtained in hep-th/0403252 for probes consisting of families of massless particles (null geodesic deviation, a.k.a. the Penrose Limit). The detailed properties of the scalar wave operator depend sensitively on the numerical coefficient of the x^{-2}-term, and as one application we show that timelike singularities satisfying the DEC are quantum mechanically singular in the sense of the Horowitz-Marolf (essential self-adjointness) criterion. We also comment on some related issues like the near-singularity behaviour of the scalar fields permitted by the Friedrichs extension.Comment: v2: 21 pages, JHEP3.cls, one reference adde

    Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    Full text link
    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves.Comment: 20 pages, LaTeX2

    Nou metges lleidatans de l'edat contemporĂ nia

    Get PDF

    Performance Studies for Strange Hadron Flow Measurements in CBM at FAIR

    Get PDF
    Measurements of the directed and elliptic flow of strange and multi-strange hadrons are an important part of the physics program of the Compressed Baryonic Matter experiment (CBM) at the future accelerator complex FAIR in Darmstadt, Germany. We present recent results from the CBM performance studies for measurements of the directed

    On Penrose limit of elliptic branes

    Full text link
    We discuss a Penrose limit of an elliptic brane configuration with N1N_1 NS5 and N2N_2 D4 branes. This background is T-dual to N1N_1 D3 branes at a fixed point of a C3/ZN2\mathbf{C}^3/\mathbf{Z}_{N_2} singularity and the T-duality survives the Penrose limit. The triple scaling limit of N1N_1 and N2N_2 gives rise to IIA pp-wave solution with a space-like compact direction. We identify the quiver gauge theory operators and argue that upon exchange of the momentum along the compact direction and the winding number these operators coincide with the operators derived in the dual type IIB description. We also find a new Penrose limit of the type IIB background and the corresponding limit in the type IIA picture. In the coordinate system we use there are two manifest space-like isometries. The quiver gauge theory operator duals of the string states are built of three bosonic fields.Comment: 25 pages with 1 figur

    Topological Aspects of Gauge Fixing Yang-Mills Theory on S4

    Full text link
    For an S4S_4 space-time manifold global aspects of gauge-fixing are investigated using the relation to Topological Quantum Field Theory on the gauge group. The partition function of this TQFT is shown to compute the regularized Euler character of a suitably defined space of gauge transformations. Topological properties of the space of solutions to a covariant gauge conditon on the orbit of a particular instanton are found using the SO(5)SO(5) isometry group of the S4S_4 base manifold. We obtain that the Euler character of this space differs from that of an orbit in the topologically trivial sector. This result implies that an orbit with Pontryagin number \k=\pm1 in covariant gauges on S4S_4 contributes to physical correlation functions with a different multiplicity factor due to the Gribov copies, than an orbit in the trivial \k=0 sector. Similar topological arguments show that there is no contribution from the topologically trivial sector to physical correlation functions in gauges defined by a nondegenerate background connection. We discuss possible physical implications of the global gauge dependence of Yang-Mills theory.Comment: 13 pages, uuencoded and compressed LaTeX file, no figure

    Domain Bubbles of Extra Dimensions

    Get PDF
    ``Dimension bubbles'' of the type previously studied by Blau and Guendelman [S.K. Blau and E.I. Guendelman, Phys. Rev. D40, 1909 (1989)], which effectively enclose a region of 5d spacetime and are surrounded by a region of 4d spacetime, can arise in a 5d theory with a compact extra dimension that is dimensionally reduced to give an effective 4d theory. These bubbles with thin domain walls can be stabilized against total collapse in a rather natural way by a scalar field which, as in the case with ``ordinary'' nontopological solitons, traps light scalar particles inside the bubble.Comment: 13 pages, no figures; to appear in Phys.Rev.

    Semiclassical quantization of rotating superstring in AdS_5 x S^5

    Full text link
    Motivated by recent proposals in hep-th/0202021 and hep-th/0204051 we develop semiclassical quantization of superstring in AdS5xS5AdS_5 x S^5. We start with a classical solution describing string rotating in AdS5AdS_5 and boosted along large circle of S5S^5. The energy of the classical solution EE is a function of the spin SS and the momentum JJ (R-charge) which interpolates between the limiting cases S=0 and J=0 considered previously. We derive the corresponding quadratic fluctuation action for bosonic and fermionic fields from the GS string action and compute the string 1-loop (large \lambda= {R^4\over \a'^2}) correction to the classical energy spectrum in the (S,J)(S,J) sector. We find that the 1-loop correction to the ground-state energy does not cancel for non-zero SS. For large SS it scales as ln⁡S\ln S, i.e. as the classical term, with no higher powers of ln⁡S\ln S appearing. This supports the conjecture made in hep-th/0204051 that the classical E−S=aln⁡SE-S = a \ln S scaling can be interpolated to weak coupling to reproduce the corresponding operator anomalous dimension behaviour in gauge theory.Comment: harvmac, 35p. v2,3: minor corrections; v4: added remarks about higher-loop corrections in section 4 and an argument suggesting the absence of higher than log S corrections to the energy to all orders in string tension in section 6.1; v5: factor 1/2 misprints corrected in eqs. (6.6) and (6.8) and thus in (6.5) and (6.9

    N=(4,4) Type IIA String Theory on PP-Wave Background

    Get PDF
    We construct IIA GS superstring action on the ten-dimensional pp-wave background, which arises as the compactification of eleven-dimensional pp-wave geometry along the isometry direction. The background geometry has 24 Killing spinors and among them, 16 components correspond to the non-linearly realized kinematical supersymmetry in the string action. The remaining eight components are linearly realized and shown to be independent of x^+ coordinate, which is identified with the world-sheet time coordinate of the string action in the light-cone gauge. The resultant dynamical N=(4,4) supersymmetry is investigated, which is shown to be consistent with the field contents of the action containing two free massive supermultiplets.Comment: latex, 15 pages; v2: typos corrected, polished, references adde
    • 

    corecore