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1. INTRODUCTION

We use a concept called “table algebra,” introduced by two of the
authors in [AB], to state and prove a general theorem which implies the
following two results as corollaries:

(a) In any nonabelian finite simple group G, the product of all the
distinct irreducible characters of G contains all the nontrivial irrcducible
characters of G as constituents.

(b) In any nonabelian finite simple group @, the product of all the
distinct conjugacy classes of G contains G — {1}

The first result is a partial solution to a conjecture stated in [ALG] and
is a generalization of Theorem 1.5 in [ACH]. For the complete solution of
the conjecture one would have to prove (a) with the word “nontrivial”
omitted. We show in Section 3 that the conjecture holds for all finite simple
groups of Lie type and for all 26 sporadic groups. Thus, using the
classification theorem for nonabelian simple groups, it remains open only
for the family A,.' Furthermore, for simple groups of Lie type G,
I,/ #=mpg. where p, is the regular character and m > 0. The second

* This research was supported by the United States—Israel Binational Science Foundation
Grant 86-0049.
"' The conjecture for A, has been verified recently by 1. Zisser.
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result (b) is well known and is due to Brauer and Wielandt [F, p. 37]. We
need to define some terms in order to state our main theorem.

DEFINITION. A table algebra (A, B) is a finite dimensional, commutative,
associative algebra A4 with identity element 1 over the complex numbers C,
and a distinguished basis B={h, =1, b,, .., b, } such that the following
properties hold (where (b,, a) denotes the coefficient of b, in ¢e A4, a

written as a linear combination of B; and where R* denotes R*{{0},
the set of non-negative real numbers):

(I) ¥or all i, j,m, bb;=3%, A,,.b, with 1, a non-negative real
number.

(IT) There is an algebra automorphism (denoted ) of A, whose
order divides 2, such that b,€ B implies that ,e B. (Then i is defined by
hi=b.)

(I11) Hypothesis (11) holds and there is a function g:BxB->R"
(the positive reals) such that

(bm’ bib/') = g(b,', bm) . (bi’ E/'bm)’

where g(b,, b,,) is independent of j, for all i, j, m.

B is called the table basis of (A, B). The elements of B are called the
irreducible components of (A, B), and nonzero combinations of elements of
B with coefficients in R* are called components. If a=3k _, 7,.b, is a
component (4,,€ R*) then [Irr(a):={bh, | 4,#0} is called the set of
irreducible constituents of a. An element a € A satisfying a = a is called a real
element.

Proposition 2.2 of [AB] shows that if (4. B) is a table algebra, then
there exists a basis B, which consists of suitable positive real scalar multi-
ples b} of the elements 5, of B, such that (4, B') is a table algebra with
g'(b;,bj)=1for all b;, b] in B’. Such a basis B’ is called normalized. Now
Irr(b} bi,--- b} consists of the corresponding scalar multiples of the
elements of Irr(b, b, ---b,), for any sequence i, i5, ..., {, of indices. So in the
proof of any theorem which identifies the irreducible constituents of a
product of basis elements, we may assume that B is normalized.

Suppose that B is normalized. It follows from (III), as in [AB, Sect. 2],
that 4 has a positive definite Hermitian form, with B as an orthonormal
basis. and such that

(a, be)= (ab, ¢)
for all ¢, b, ce RB.

If G is a finite group then the algebra Ch(G) generated by B = /rr(G)
over C and the algebra Z(C[G]) generated by the conjugacy class sums of
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G are examples of table algebras. Recently, several results were proved
concerning products of irreducible characters and products of conjugacy
classes in finite groups which demonstrated, sometimes, an analogy
between the two concepts. A full survey and bibliography about this topic
can be found in [A]. The concept of table algebra led us in [AB] to form
unified proofs of these analogous theorems. Table algebras are shown in
[AB, Theorem 2.10] to be equivalent to a particular type of C-algebra (see
[BI]). The notion of C-algebra is nearly 50 years old, but has only recently
become one of interest in the study of commutative association schemes
and other generalizations of the character ring and class algebra of a finite
group.
Our main result s as follows:

THEOREM A. Let (A, B) be a table algebra and let a € B. Then for every
positive integer I,

aelrr ( [ h).
belrr(aa) o a!l
Our first consequence is
COROLLARY 1. Let (A, B) be a table algebra and b,eB. Assume that
there exists a positive integer n; such that B =1Irr(b}"). Then b, e Irr([ ], a).

To state Corollary 2 we need the following definitions from [AB]. For
each of them, (A, B) denotes a table algebra.

DEFINITION. A subset D < B is called a table subset of B if D # ¢ and
Irr(b;b;)= D for all b, h;e D. A subalgebra of 4 generated by some table
subset of B is called a rable subalgebra of (A, B).

DEFINITION. (A, B) is simple if the only table subsets of B are B
and {1}.

DEFINITION.  An element he B is called /inear if Irr(b")= {1} for some
n>0.

DErFINITION. (A, B) is abelian if every clement of B is linear.
As noted in [AB], the notions of “simple” and “abelian” coincide with
the usual ones for the group G when 4 = Ch(G) or Z(CG).

COROLLARY 2. Let (A, B) be u nonabelian simple table algebra. Then
B=7mr([1,.ep)u {1
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Example (6) in [AB, Sect. 5] is that of a nonabelian simple table algebra
(4, B) with B={1, b, b, ¢} such that Irr(bbc)={b, b, c} =B—{1}. Thus
the result of Corollary 2 is the best possible.

Results (a) and (b) mentioned above follow imediately from Corollary 2.

Some steps toward a general theory of table algebras and applications to
finite group theory can be found in [AB]. We hope that further study of
the properties of table algebras will be useful in obtaining new results
about finite groups.

2. PROOF OF THEOREM A

Let (A, B) be a table algebra and fix aeB. In proving Theorem A, it
suffices to assume that ¢#1 and that B is normalized. We make these
assumptions throughout this section. Thus (b, ¢d)=(d, b¢) for all com-
ponents b, ¢, d of A.

Since 1€ /lrr(ad), it is clear that Irr(aa) "' 2Irr(ad) for all ieN
(the positive integers), and that if Irr(aa)* ' = Irr(aa)’ for some ieN
then frr(aa)’ = Irr(aa)’ for all j>=i. Set Irr(aa)’ = {1} and Irr(aa) '=.
Note that for all j=i20, Irr(aa)’ — Irr(aa)’ is stable under

Lemma 1. If H, and H, are two disjoint subsets of B with
aelrr(all, ., h) for i=1,2, then aelrr(a(l 1, 1, 1))

Proof. 1t follows from the hypotheses that

aeIrr(a I1 h>§1rr [(a [1 lz) 11 lz:|:1rr <a 11 /z>.
he il he H> he ll he Hyw H>

LEmMMmA 2. If {aluldyVH UH.SB with aclrr(ad([1, h)) for
i=1,2, then there exists ¢ € Irr(aa) such that

aerr(ac <HH | ”)<,,£L | ).

Proof. By our assumption, 0 # (ad [1,., h a) = (d, aa T1, ., ")
So there exists ¢ € Irr(aa) such that 0 # (d, ¢ [1,.,, 7). Hence
aelrr(ad [T, .y, M) S Irrla(cl 1, M T, 0 1], as desired.

LemMMA 3. [f belrr(aa) — Irr(aa)’ ' for some j=1, then there exists
celrr(aa)y ' —Irr(ad) * such that aeIrr(abe).

Proof. By hypothesis, 0< (b, (aa)’)=(a, b(ad)’ ‘a). So there Iis
ce Irr(aa) " such that 0 < (a, bca) and hence a c Irr{abe). If c € Irr(ad)’ *
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then 0<(q, b(aa)’ “‘a)= (b, (aa)’~") implies that belrr(aa)’ '. a con-
tradiction.

LEMMA 4. Suppose that x is a component of A, a€ Irr(aa)’ — Irr(aa)’ '
Jor some t >0, and a € Irr(axa). Suppose also that either a =a or x = x. Then
there exists ceIrr(aa) — {a} with ae Irr(axc).

Proof. Assume first that a=a. So aelrr(a?)’ implies that there exists
ue lrr(a*) with aelIrr(u(a®)’ ). Then 0 < (a, u(a®)'~')=(u, a® ') yields
uelrr(a® '), Now aelrr(a’x) implies [Irr(a® ') Irr(a® “a’x)=
Irr(a®x). Hence u e Irr(vx) for some v e a™.

If v=a then aelrr(@® "w)ycrr(a® "“ax). So there exists
eelrr(aa)’ ' (hence e # a, by hypothesis) with a € Irr(eax). The conclusion
then holds, with ¢ =e.

If va, then aelrr(au) (as ue Irr(a?) implies 0 < (u, a*) = (a, au)) and
Irr(au) < Irr(avx) yield ae Irr(avx) and ve Irr(aa)’. The conclusion holds
with ¢ =v.

So we may assume that «#a, hence by hypothesis x=x Then
ae Irr(axa) implies that

0 <(a, axa) = (a, axa) = (a, axd).

Now «ae€ Irr(aa)’ forces aelrr(aa)’, and we have aelrr(axa). So the
conclusion holds, with ¢=a.

LemMMA 5. Suppose be Irr(aa) — Irr(aa)’ ' — {a} for some j= 1. If any
of b=>b, b=a, or a=a holds then there exists c € Irr(aa)y ' — {a} such that
ae Irr(abe).

Proof. By Lemma 3, there exists de frr(aa)’ ' — Irr(aa@)’ * such that
a€ Irr{abd). 1f there exists such d # a, then the conclusion holds with ¢ =d.
In particular, if 5= a then ae Irr(aid) — Irr(aa)’ ' and so all such d # a.

So we may assume that either b=h or a=a, that aelrr(aa)y '—
Irr(aa)’~* and that a € Irr(aba). The result now follows from Lemma 4.

DEFINITION.  Let i> j be positive integers. An adequate partition (a.p.)
(S. f) of Irr(aa) — Irr(aa)’ — {a} is a collection S of disjoint subsets S
whose union is [Irr(aa) — Irr(ad)’ — {a}, and a function f:S-—
Irr(ad)’ — {a} such that

(i) forall SeS, aelrr(a-f(S)-T1,.h); and
(i) for all SeS, S—{a}=S— {a}.
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(S, f) is called a fully adequate partition (f.a.p.yif (S, f)is an a.p., and if,
in addition,

(i) if S TeS then f(S)# f(T)

LEMMA 6. Ler i>j= 1. If Irr{aa) — Irr(aa) — {a} has an a.p. then it
has a f.a.p.

Proof. Let (S,f) be an a.p. Suppose that f(S)=f(T) for some
T+# SeS. Now ais not in at least one of S, 7, so we may assume that a¢ S.
Then S=S5§ by (ii). Lemma2 and S~ T=(J imply that there exists
ce Irr(aa) such that

aelrr (ac < I1 ﬁ)( |1 /1>> =Irr (a(' |1 /l).
heS heT heSuT

If ¢=a, then a,a€lrr(aa) and Su TS rr(aa) — Irr(aa)’ imply that
a¢ SUT. SoSuT=SuTby (ii) in this case. Then Lemma 4 implies there
exists d€ Irr(aa) — {a} with ae Irr(ad[], .. ") So we may assume that
¢#ain any case.

Now form a new partition T of Irr(aa) — Irr(aa)’ — [a} as follows:
replace S and T by one set, SU T, and re-define f(Sw T)=c. That is,
choose any ¢(#a) as above for the image. The other subsets in T and
values of f are identical with those of (S, f). Then it is easy to see that
(T, f} is an a.p., with [T| =S| — 1. Since this process may be repeated if T
does not satisfy (iii), the result holds.

Lemma 7. For any i 22, Irr(aa)’ — Irr(aqd)’ ="' — {a} has a fa.p.

Proof. We may assume that [Irr(aa)’ — Irr(aa) '—{a}#, as
otherwise we can define S={} and f(@)=1.

For each b#belrr(aa) — Irr(aa) '— {a}, with h#a, define S,=
S,=1{b,b} and define f(S,)=1. For each beIrr(aa) — Irr(aa) '—{a)
such that either b=5h or b=a, Lemma5 implies that there exists
celrr(aa) ' — {a} such that a€ Irr(abc). Define S,= (b} and f(S,)=

Now let S=/{S,|belrr(aa) —Irr(aa)’ '—{a}}, and let f[:S—
Irr(aa)’ ' — {a} be as in the paragraph above. Then (S, /) is clearly an a.p.
for Irr(aa) — Irr(aa)’ ' — {a}. Lemma 7 now follows from Lemma 6.

LemMMa 8. Suppose that i>j=2. If there is an a.p. for Irr(aa) —

Irr(aa) — {a} then there is an a.p. for Irr(aa) — Irr(ady '— {a}.

Proof. By Lemma 6, Irr(ad)’ — Irr(aa) — {a} has a fap. (S, /) W
proceed to construct an a.p. (T, g) for Irr(aa) — Irr(aa)y ~' — {a} Let
heIrr(aa)y — Irr(aa) ' — {a}. We define a set T,, so that he T, (T, will be

an element of T), and a value g(7T,), as foliows:

SR 13X 1-13
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(1) Suppose that b= [(S) for some (necessarily unique) S €S, and that
cither b=b or b=a Define T,=Su b} and g(T,)=1. Note that
aclrr(ab ], ¢ h). since (S, /) satisfies (1).

(2) Suppose that b+ f(S) for all Se8, and that cither h=5b or
b=a. Lemma5 implies that there exists celrr(aa)’ '— {a} such that
ae Irr(abc). Define T,={h} and ¢(T,) ="

(3) Suppose that b#b, b#a, and that neither b nor b is in f(S).
Define 7, =T;={b, b} and g(T,)=1.

(4) Suppose that b#b, b#a, and that b= [(S) for some SeS but
b¢ f(8S)

1

If «=a then Lemma 5 implies that there exists ce Irr(aa) '— la]
with aelrr(abc). Then {b,c}n({b}uS)=, aelrr(ab[],.sh), and
Lemma | imply that aelrr(achb([], h)). Then define T,=T7,=
Su{b, b} and g(T,)=c.

Suppose that a#a. Lemma 3 says that there exists ce Irr(aad) ' with
ae Irr(abe). If some such ¢ # a then again, ae Irr(ab [],_ ¢ h) and Lemma 1
imply that ae Irr(achb(I1,. ¢ h)). Again, define T,=T,=Su {b, b} and
g(T,) =c. Otherwise, we have that a#aelrr(aa)’ ' and ae Irr(aba). So
0 < (a, aba) = (a, aba) implies that « e Irr(aba). Also, S=S (as a¢ S) and
aelrr(ab(I],.¢h)) yield that

o<(aah(1n))=(war(1n))=(ear(I1 1))

and hence that a € Irr(ab([],.sh)). Since {h,a} n ({b} U S) = I,
Lemma I implies that aelrr(abba(]], . h)). T hen define 7,=T;=
Su b b} and g(T,)=a.

(5) Suppose that b#b and that b= {f(S,), b= f(S,) for some
Sy, S,€S. Then aelrr(ab([ ], s, 1) 0 Irr(ab([], ., 7)) and ({h} U S|)N
( /3} S,)=(J. So Lemma 1 yields aeIir abb( H,,Hl M Tcs, h) Define

=T,={hb}uS uUS,and g(T,)=1.
Now define T, a collection of subsets of Irr(aa)’, by

T:={T,|belrr(aq)y —Irr(aa) ' —'a)}
U {S|SeSand f(S)e Irr(aa) '}.
where T, and g(7,) are as defined in (1}-(5) Let g(S)y=/(S) if

f(SYelrr(ad) ~'. It is now easy to check that (T, g) is an a.p. of
Irr(aa)' — Irr(ad)’ ' — {a}. The result follows from Lemma 6.

Proof of Theorem A. Lemmas 7 and 8 imply that there is a fa.p. (S, /)
for Irr(aa)’ — Irr(aa) — {a}. (If i=1, we may take S={¢J} and f(J)=1
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So for each Se8, f(S)elrr(ad)— {a} and aelrr(a- f(S)-([1,cs 7)) Now
the sets Su {f(S)} and {b}, as S runs over S and b runs over
Irr(ad) — f(S)— {a}, are all disjoint from one another. For each
beIrr(ad)— f(S)— {a}, 0<(aa, b)={(a, ab) implies that ae lrr(ab). So
Lemma 1 yields that

aelrr [a(ﬂ f(S)<n h>>< I1 b>}=1r1'< 11 /1).
SesS heS Irr(aa) - f(SY~ la! helrr(aaY o ja)

vy

This completes the proof of Theorem A.

3. PROOFS OF THE COROLLARIES AND FURTHER REMARKS

Proof of Corollary 1. Let b=b,, n=n,. By assumption, B=1Irr(b"). So
Irr(bbY' = Irr[ Irr(b") Irr(b")] = B. Thus Corollary 1 is an immediate conse-
quence of Theorem A.

The following example illustrates that Corollary 1 is the best possible.

ExampLe. Let B={y,, x,, 73} where y,, 1., y; are the irreducible
characters of S, with the table of values

AR S |
7, 1 —1 1
¥;: 2 0 —1

Then y, is a real nonlinear character with (y3)*=y,+ x>+ ;. Thus
Irr(x3)=B. Now Irr(T1,, . sy g 20 =G z2725) = (s -

Proof of Corollary 2. Since (A, B) is a nonabelian simple table algebra,
then by Proposition 4.2 of [AB], for every b, # 1 in B, there exists »; such
that B = Irr(b). So Corollary 2 follows from Corollary 1.

Remark. Let G be a finite group. Recall that y e Irr(G) is of p-defect
zero if y(g) =0 for all p-singular elements g in G[I, pp. 133-134].

Consider the following properties {(which may or may not hold for an
arbitrary finite group G):

G has an irreducible character of p-defect zero for every p | |G|

[P S

{
(
( (I'l, ¢ srme) #)=mpg. where pg is the regular character and m > 0.

)
) For each g+#1 in G, there exists y € Irr(G) with y(g)=0.
)
)

4y t.,e 1""(ng Jeeicy X
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It is easy to see that (1)=(2)<>(3)= (4). Michler and Willems have
shown that (1) holds for all finite simple groups of Lie type [M, W . Using
the Atlas [At], one sees that (2) holds for all sporadic groups except M.,
and M,,, where (4) holds anyway. So by the classification theorem for
nonabelian simple groups, the conjecture mentioned in our Introduction
remains open only for 4,. Little is known about (1) for 4,, except that A4,
has characters of 2-defect zero for only certain values of n, and has characters
of 5-, 7-, and 11-defect zero for all n>5 by Atkins and Olsson [M].
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